Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Assurance</td>
<td>3</td>
</tr>
<tr>
<td>Features and Benefits</td>
<td>4</td>
</tr>
<tr>
<td>Specifications</td>
<td>5</td>
</tr>
<tr>
<td>Fixed Displacement Motors</td>
<td>5</td>
</tr>
<tr>
<td>Variable Displacement Motors</td>
<td>6</td>
</tr>
<tr>
<td>Dimensions & Weights</td>
<td>7</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td>Fixed Displacement</td>
<td>8</td>
</tr>
<tr>
<td>Variable Displacement/Mechanical</td>
<td>8</td>
</tr>
<tr>
<td>Variable Displacement/Solenoid</td>
<td>9</td>
</tr>
<tr>
<td>Variable Displacement/Hydraulic</td>
<td>9</td>
</tr>
<tr>
<td>Performance Curves</td>
<td></td>
</tr>
<tr>
<td>Torque vs Net Pressure</td>
<td>10</td>
</tr>
<tr>
<td>Horsepower vs Speed</td>
<td>11</td>
</tr>
<tr>
<td>Overall Efficiency vs Net Pressure</td>
<td>12-13</td>
</tr>
<tr>
<td>Ordering Information</td>
<td>14</td>
</tr>
</tbody>
</table>
Every Oilgear product is shipped to you with our Performance Assurance — a corporate commitment to stay with your installation until our equipment performs as specified.

Hydraulic equipment and systems have been Oilgear’s primary business since 1921. For decades, we have developed hydraulic techniques to meet the unique needs and unusual fluid power problems of machinery builders and users worldwide, matching fluid power systems to a tremendous range of applications and industries. Our exclusive Performance Assurance program is built upon that strong foundation.

As a customer, you also benefit from access to Oilgear’s impressive technical support network. You’ll find factory trained and field-experienced application engineers on staff at every Oilgear facility. They are backed by headquarters staff who can access the records and knowledge learned from decades of solving the most difficult hydraulic challenges.

When your design or purchase is complete, our service is just beginning. If you ever need us, our Oilgear engineers will be there, ready to help you with the education, field service, parts and repairs to assure that your installation runs smoothly — and keeps right on running.
Bi-Directional Motors

Cylinder mounted in polymerous journal bearing
- Allows operation with special fluids
- Provides infinite bearing life
- Allows compact design

Totally enclosed (no openings to atmosphere)
- Can be operated in demanding locations
- Sealed against even high pressure wash downs

SAE keyed or SAE splined shaft
- Heavy-duty belt shafts also available

Sealed front shaft bearing
- Allows operation with special fluids
- Allows side loading

Steel shoes with specially treated faces for increased fluid retention, running on hardened swashblock surface
- Provides a higher degree of contamination resistance
- Allows higher pressure operation
- Provides longer life
- Allows operation with special fluids

Hydrostatically balanced piston/shoe assembly
- Allows higher pressure operation and long life
- Provides compact design

Cartridge construction
- Simplifies field servicing
- Expedites replacement parts ordering and stocking

Hardened cylinder surface running on hardened valve plate (“hard on hard”)
- Provides greater resistance to contaminates
- Allows operation with special fluid
- Provides longer life

Two frame sizes with four displacement ranges
- Allowing greater flexibility to selectively match pressure and capacity
- Low displacement/high pressure (torque) to low pressure/high displacement in the same frame size

Compact, low inertia design
- Quick, smooth response to control command
- Quick braking – emergency hydrodynamic, metered hydrodynamic or regenerative braking when used with proper pump and control
- Quick reversal
Nominal Performance Data with 150-300 SSU viscosity fluids

<table>
<thead>
<tr>
<th>FRAME SIZE</th>
<th>UNIT SIZE</th>
<th>THEORETICAL MAXIMUM DISPLACEMENT</th>
<th>RATED CONTINUOUS PRESSURE</th>
<th>MAXIMUM PRESSURE</th>
<th>PRESSURE Break-away</th>
<th>SPEED Min.</th>
<th>SPEED Max.</th>
<th>TORQUE at contin. pres. disp.</th>
<th>OUTPUT at 1800 rpm, cont. pres. max. disp.</th>
<th>INERTIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 06</td>
<td>0.86</td>
<td>14.1</td>
<td>4000</td>
<td>276</td>
<td>4500</td>
<td>310</td>
<td>500</td>
<td>34.5</td>
<td>600 3000 465 52.5 13.3 9.9 0.029 0.0012</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.35</td>
<td>22.1</td>
<td>3000</td>
<td>207</td>
<td>3500</td>
<td>242</td>
<td>500</td>
<td>34.5</td>
<td>600 3000 562 63.5 16.1 11.9 0.029 0.0012</td>
<td></td>
</tr>
<tr>
<td>B 15</td>
<td>2.06</td>
<td>33.8</td>
<td>3500</td>
<td>242</td>
<td>4000</td>
<td>276</td>
<td>330</td>
<td>22.8</td>
<td>600 3000 1030 116.4 30.0 22.4 0.130 0.0055</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.83</td>
<td>46.4</td>
<td>2900</td>
<td>173</td>
<td>3000</td>
<td>207</td>
<td>330</td>
<td>22.8</td>
<td>600 3000 960 108.5 27.5 20.5 0.130 0.0055</td>
<td></td>
</tr>
</tbody>
</table>

FIXED DISPLACEMENT MOTORS

= Bi-Directional Constant Torque/Variable Horsepower

Motor torque is a function of pressure and motor displacement. Pressure is generated by the load, but limited by the pump relief valve or operation of pump control. Motor displacement (in this case) is fixed. So maximum motor torque is available whether motor is stalled or going full rpm.

Horsepower output, with a constant working torque (pressure) is approximately proportional to speed – which is regulated by pump volume delivered to the motor. Thus, it is possible to reduce pump delivery, when stalled, or bring motor and load up to speed, while maintaining full torque and without wasting horsepower.
= Constant Horsepower/Variable Torque
Speed of these variable displacement motors, when driven by a fixed delivery hydrostatic pump, can be adjusted over a 4:1 range. But, each motor has a maximum rated speed (see “Specifications”) that must not be exceeded when motor displacement is varied. With a fixed volume delivery to the motor, reducing motor displacement increases output speed and reduces available torque. These constant horsepower/variable torque drives are limited to uni-directional applications unless a reversing valve is incorporated in the high pressure circuit.

= Constant Torque or Constant Horsepower
A variable displacement motor driven by a variable delivery pump provides either constant torque or constant horsepower at variable (and reversible) speed. Maximum torque is available when motor is at full displacement. Speed and direction of rotation respond to pump control. Speed can be increased (to shaft speed limit), when pump is at full volume, by reducing motor displacement. Horsepower output will remain constant, over this higher operating range, while torque will vary inversely with speed (motor displacement). This system provides constant torque (and variable power) until pump reaches full delivery and constant power (and variable torque) as motor displacement is reduced and output speed increased.

Control selection available
■ Four different types of controls – including manual, solenoid, and hydraulic
■ Field interchangeability without disconnecting motor from driven component or system piping

Patented pressure lubricated swashblock design
■ Provides high performance operation
Dimensions & Weights

<table>
<thead>
<tr>
<th>FRAME SIZE</th>
<th>MOTOR SIZE</th>
<th>HEIGHT in.</th>
<th>HEIGHT mm.</th>
<th>WIDTH in.</th>
<th>WIDTH mm.</th>
<th>LENGTH in.</th>
<th>LENGTH mm.</th>
<th>WEIGHT lbs.</th>
<th>WEIGHT kg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6 & 10</td>
<td>5.75</td>
<td>131</td>
<td>5.12</td>
<td>130</td>
<td>7.29</td>
<td>227</td>
<td>32</td>
<td>14.5</td>
</tr>
<tr>
<td>B</td>
<td>15 & 20</td>
<td>7.06</td>
<td>172</td>
<td>6.88</td>
<td>175</td>
<td>8.54</td>
<td>274</td>
<td>68</td>
<td>31</td>
</tr>
</tbody>
</table>

All dimensions are approximate. For detailed dimensions, see Data Sheet 47882 ("A" Frame) or 47883 ("B" Frame).

MVW Dimensions & Weights Reference Data

<table>
<thead>
<tr>
<th>MVW</th>
<th>SIZE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN Control</td>
<td>06 & 10</td>
<td>Data Sheet 47170</td>
</tr>
<tr>
<td></td>
<td>15 & 20</td>
<td>Data Sheet 47171</td>
</tr>
<tr>
<td>MN Control</td>
<td>06 & 10</td>
<td>Data Sheet 47175</td>
</tr>
<tr>
<td></td>
<td>15 & 20</td>
<td>Data Sheet 47176</td>
</tr>
<tr>
<td>HD Control</td>
<td>06 & 10</td>
<td>Data Sheet 47880</td>
</tr>
<tr>
<td></td>
<td>15 & 20</td>
<td>Data Sheet 47881</td>
</tr>
<tr>
<td>RU Control</td>
<td>06 & 10</td>
<td>Data Sheet 47871</td>
</tr>
<tr>
<td></td>
<td>15 & 20</td>
<td>Data Sheet 47872</td>
</tr>
</tbody>
</table>
Motor Controls*

FIXED DISPLACEMENT

- No Control "NN"

VARIABLE DISPLACEMENT CONTROLS**
MECHANICAL

- Handwheel "HN"
 Provides a simple manual adjustment of displacement.

- Lever "MN"
 Can rotate a pintle and vary displacement proportionally.

* Be sure system and motors are protected against overloads with a high pressure relief valve.
** Be sure minimum displacement is set (displacement stop) to prevent output rpm from exceeding maximum rated speed.
Solenoid

- **Two Displacements**
 "RU"
 Two adjustable displacements selected by operation of valve.

Hydraulic

- **De-stroker**
 "HD"
 Two displacements, full stroke and adjustable reduced stroke activated by user-supplied pilot pressure.

* Be sure system and motors are protected against overloads with a high pressure relief valve.
** Be sure minimum displacement is set (displacement stop) to prevent output rpm from exceeding maximum rated speed.
PERFORMANCE

All curves are based on typical units operating with 140 SSU fluid at 125°F and 75 psi back pressure.

TORQUE vs NET PRESSURE

MVW-06

MVW-10

MVW-15

MVW-20
All curves are based on typical units operating with 140 SSU fluid at 125°F and 75 psi back pressure.

HORSEPOWER vs SPEED

MVW-06 (Full Stroke)

MVW-10 (Full Stroke)

MVW-15 (Full Stroke)

MVW-20 (Full Stroke)
PERFORMANCE

All curves are based on typical units operating with 140 SSU fluid at 125°F and 75 psi back pressure.

OVERALL EFFICIENCY vs NET PRESSURE

- MVW-06 (Full Stroke)
- MVW-06 (1800 RPM)
- MVW-10 (Full Stroke)
- MVW-10 (1800 RPM)
All curves are based on typical units operating with 140 SSU fluid at 125°F and 75 psi back pressure.
HOW TO ORDER

<table>
<thead>
<tr>
<th>BLOCK NUMBER EXPLANATION</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIXED MOTOR EXAMPLE</td>
<td>M</td>
<td>F</td>
<td>W</td>
<td>15A</td>
<td>A</td>
<td>Y</td>
<td>NN</td>
<td>NN</td>
</tr>
<tr>
<td>VARIABLE MOTOR EXAMPLE</td>
<td>M</td>
<td>V</td>
<td>W</td>
<td>06A</td>
<td>A</td>
<td>S</td>
<td>HN</td>
<td>NN</td>
</tr>
</tbody>
</table>

1 = **UNIT**
 M = Motor

2 = **TYPE**
 F = Fixed Displacement
 V = Variable Displacement

3 = **DESIGN SERIES**
 W = Hydrodynamic Bearing

4 = **UNIT SIZE**
 W Des.
 05A = 0.85 cipr
 10A = 1.36 cipr
 15A = 2.05 cipr
 20A = 2.82 cipr

5 = **PORT TYPE**
 A = SAE Straight Thread

6 = **SHAFT END**
 Y = Keyed SAE
 S = Splined SAE
 B = Keyed Belt Drive
 C = (c) Splined Belt Drive

7 = **CONTROL TYPE**
 HD = Hydraulic two position
 HN = Handwheel
 MN = Pintle for Lever
 *RU = Solenoid/Dual Position
 NN = Fixed Displacement (no control)
 *115VAC/60Hz. standard, other voltages available (additional cost)

8 = **DISPLACEMENT STOPS**
 NN = No Volume Stops
 SA = Minimum Stop (HD, MN, RU, HN)
 SN = Maximum Stop (HN, RU, MN)
 SB = Both Min. & Max. (HN, MN, RU)
AUSTRALIA
Oilgear Towler Australia Pty. Ltd.

BRAZIL
Oilgeardo Brazil Hydraulica Ltd.

CANADA
The Oilgear Company

FRANCE
Oilgear Towler S.A.

GERMANY
Oilgear Towler GmbH

INDIA
Oilgear Towler Polyhydron Pvt. Ltd.
Towler Automation Pvt. Ltd.

ITALY
Oilgear Towler S.r.l.

JAPAN
The Oilgear Japan Company

KOREA
Oilgear Towler Korea Co. Ltd.

MEXICO
Oilgear Mexicana S.A. de C.V.

SPAIN
Oilgear Towler S.A.

TAIWAN
Oilgear Towler Taiwan Co. Ltd.

UNITED KINGDOM
Oilgear Towler Ltd.

UNITED STATES OF AMERICA
The Oilgear Company

World Headquarters
The Oilgear Company
2300 South 51st Street Milwaukee, WI USA 53219
phone: 414/327-1700 fax: 414/327-0532
www.oilgear.com

For more information about your application or the products in this brochure, please contact your nearest Oilgear facility.