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Abstract

This report presents the canonical Hamiltonian formulation of rela-

tive satellite motion. The unperturbed Hamiltonian model is shown to

be equivalent to the well known Hill-Clohessy-Wilshire (HCW) linear

formulation. The influence of perturbations of the nonlinear Gravi-

tational potential and the oblateness of the Earth; J2 perturbations

are also modelled within the Hamiltonian formulation. The modelling

incorporates eccentricity of the reference orbit. The corresponding

Hamiltonian vector fields are computed and implemented in Simulink.

A numerical method is presented aimed at locating periodic or quasi-

periodic relative satellite motion. The numerical method outlined in

this paper is applied to the Hamiltonian system. Although the orbits

considered here are weakly unstable at best, in the case of eccentricity

only, the method finds exact periodic orbits. When other perturba-

tions such as nonlinear gravitational terms are added, drift is signifi-

cantly reduced and in the case of the J2 perturbation with and without

the nonlinear gravitational potential term, bounded quasi-periodic so-

lutions are found. Advantages of using Newton’s method to search for

periodic or quasi-periodic relative satellite motion include simplicity

of implementation, repeatability of solutions due to its non-random

nature, and fast convergence.

Given that the use of bounded or drifting trajectories as control

references carries practical difficulties over long-term missions, Prin-

cipal Component Analysis (PCA) is applied to the quasi-periodic or

slowly drifting trajectories to help provide a closed reference trajectory

for the implementation of closed loop control.

In order to evaluate the effect of the quality of the model used

to generate the periodic reference trajectory, a study involving closed

loop control of a simulated master/follower formation was performed.
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The results of the closed loop control study indicate that the quality

of the model employed for generating the reference trajectory used for

control purposes has an important influence on the resulting amount

of fuel required to track the reference trajectory. The model used to

generate LQR controller gains also has an effect on the efficiency of

the controller.
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1 Introduction

There has been a considerable interest in using clusters of small coopera-

tive satellites to perform multi-tasks as opposed to a single large expensive

satellite. A cluster of satellites will be able to synthesize a much larger aper-

ture for Earth mapping interferometry than can be achieved with a single

platform. Accurate modelling of relative motion dynamics for initial con-

ditions close to the leader satellite is essential for this problem. Therefore,

the solutions of interest are restricted to a specific set of initial conditions

that lead to periodic motion, such that the satellites do not drift apart. The

celebrated Clohessy-Wiltshire (CW) equations (see [1]) describe the relative

motion of one satellite with respect to another under the assumptions of a

circular reference orbit, spherical earth and linearized gravitational potential.

These equations of relative motion can be solved explicitly and a constraint

on the initial conditions can be calculated which generate periodic motion.

However, these initial conditions have to be corrected to obtain bounded

solutions in the presence of nonlinearity in the gravitational potential, the

oblateness of the Earth, and eccentricity of the reference orbit; the three

most important perturbations that break down the periodic orbit solutions

of the CW equations, see reference [2].

There is a wealth of literature on this problem and mentioned here are some

of the most recent papers. Inalhan, Tillerson and How [4] derive explicit

solutions of the linearized relative equations of motion with eccentricity of

the reference orbit and find necessary conditions on the initial states that

produce periodic solutions. Reference [5] studies the effects of J2 perturba-

tions and air drag which induce secular effects, i.e. a drift of relative position

and implements an impulsive velocity correction control to compensate for

this drift. In [6], Shaub and Alfriend, defined J2 invariant orbits by develop-
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ing special relationships between the deviations of the mean orbital elements

and developed nonlinear control laws to establish these orbits. In [7], Wiesel,

proposes a Hamiltonian formulation, which has the advantage of the ease

of adding perturbations and considers the oblateness of the Earth and air

drag. In this model the solution conceptually resembles the CW solution for

relative motion, but includes all zonal harmonics of the Earth’s gravitational

field. This paper includes all gravitational harmonics through order 14, and

uses Floquet theory to find periodic solutions. There is little work done

which considers the combined effects of the nonlinearity in the gravitational

potential, the oblateness of the Earth and eccentricity. This report describes

a variant of Newton’s method aimed at locating periodic or quasi-periodic

relative satellite motion. The original method, which is based on the Hamil-

tonian formalism, has been proposed for locating periodic orbits embedded in

a largely chaotic system [9, 12]. In the original method, segments character-

ized by a relatively low positive local Lyapunov exponent which characterize

stable orbits are located. Once this selection is made convergence to stable

(or weakly unstable) periodic orbits is obtained by Newton’s method.

The Newton method was applied to the Hamiltonian model of relative mo-

tion. In the unperturbed case an analytic condition is observed (equivalent

to the well known Clohessy-Wiltshire equations) that gives a closed periodic

solution. As perturbations are added this condition no longer gives closed

solutions, but does however serve as a good initial guess for the application

of Newton’s method. Finally, a closed loop controller is applied to the rel-

ative satellite motion model, using the trajectories found using the Newton

method, as reference orbits.

7



2 Methodology

It is proposed that as many nonlinearities as possible are taken into consid-

eration in the ‘study model’. The study model consists of the Hamiltonian

equations of motion that include the conservative perturbations; nonlinear

gravitational potential terms, zonal harmonics and eccentricity. The study

uses a numerical method for locating periodic solutions embedded in a largely

chaotic system, see reference [9] which is applied to the study model out-

lined in this report. One of the assumptions of this method is that it is

implemented in the Hamiltonian formalism, it is also necessary to compute

trajectories and it is therefore necessary to derive the Hamiltonian equations

of motion.

In a recent paper, [8], Kasdin and Gurfill present a Hamiltonian approach

to modelling relative spacecraft motion based on the derivation of canonical

coordinates. The Hamiltonian formulation accommodates the modelling of

nonlinear terms and orbital perturbations via variation of parameters. Kas-

din and Gurfil derive the kinetic and potential energy of the system in order

to define the Lagrangian function (function on a vector space) and use the

Legendre transformation to construct the Hamiltonian function (function

on the dual space). The formulation used in this report is the same as in

[8] except that the nonlinear model is used rather than truncations of the

perturbation terms and the normalization of the gravitational constant, the

radius of the reference satellite about the Earth and mean motion are not

assumed. This is the most suitable coordinate system for our purposes as the

unperturbed Hamiltonian is shown to be equivalent to the CW equations and

the perturbations can be added easily, thus adding complexity in a stepwise

manner. In addition this coordinate system allows the use of control and

simulation techniques to be implemented effectively.
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The ‘study model’ is used to obtain initial conditions that induce periodic or

quasi-periodic orbits. It includes various perturbations of relevance including

eccentricity, gravitational nonlinearities and zonal harmonics. Once these or-

bits have been found for the model with the most complexity, they are used as

reference orbits in closed loop control simulations involving the ’full model’.

The full model includes nonlinearities, eccentricity, the J2 perturbation and

actuation variables for the implementation of closed loop control.

To implement the variant of the Newton method it is necessary to compute

the Hamiltonian function and the corresponding Hamiltonian vector fields,

the latter are computed with the aid of Mathematica. The Hamiltonian

equations of motion, which were implemented in Simulink, are derived and

expressed in the Appendix.

3 Hamiltonian Formulation

3.1 Deriving the Lagrangian

The Hamiltonian formulation has many advantages. Firstly, for our purposes

it allows the Newton method to be applied, as this method relies on the

conserved energy constraint given by the Hamiltonian function. In addition

the Hamiltonian formulation allows for additional conservative forces to be

added to the Hamiltonian, thus the addition of complexity to the model

can be incorporated with ease. Nonconservative forces can be added in the

momenta equations of motion. The Hamiltonian equations of motion allows

us to directly use control and simulation techniques. Inspired by [8] we derive

the Hamiltonian function equivalent to the HCW equations and then derive

the nonlinear equations of motion which will be used to search for periodic or

quasi-periodic orbits. The Hamiltonian equations of motion are then derived
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with the aid of Mathematica. The coordinate system (a rotating Cartesian

Euler-Hill system see Figure 1), denoted by <, is defined by the unit vectors
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Figure 1: Euler-Hill Reference frame - Relative motion

x̂, ŷ, ẑ. In [8] the equations of motion are derived on a circular reference

orbit of radius a about the Earth. The co-ordinate system is rotating with

frequency ω =
√

µ/a3, where µ is the gravitational constant. However, in the

following derivation the reference orbit is not restricted to a circle in order

to account for the effect of eccentricity. The radius is denoted r and the

rate of change of the true anomaly is denoted θ̇. The reference orbit plane

is the fundamental plane, the positive x̂− axis points radially outward , the

ŷ − axis is the relative position in the cross track direction, and the ẑ − axis

is orthonormal to both x̂ and ŷ and is out of the leader satellite plane. The

first step is to derive the Lagrangian of relative motion. The velocity of the

follower satellite is given by:

~v = =~ω< × ~r1 +
d<

dt
~ρ + =~ω< × ~ρ (3.1)
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where ~r1 ∈ R3 is the inertial position vector of the leader satellite along the

reference orbit, ~ρ = [x, y, z]T is the relative position vector in the rotating

frame, and =~ω< = [0, 0, n]T is the angular velocity of the rotating frame <
with respect to the inertial frame =. Denoting ‖~r1‖ = r and substituting

into (3.1) in componentwise notation:

~v =




ẋ− ωy + ṙ

ẏ + ωx + ωr

ż


 (3.2)

The kinetic energy per unit mass is given by

K =
1

2
‖~v‖2 (3.3)

Initially assuming a spherical attracting Earth, the potential energy of the

follower satellite, whose position vector is ~r2, is the usual gravitational poten-

tial written in terms of ρ = ‖~ρ‖ and expanded using Legendre polynomials.

U = − µ

‖~r2‖ = − µ

‖~r1 + ~ρ‖ = − µ

r
[
1 + 2~r1·~ρ

r2 +
(

ρ
r

)2
]1/2

= −µ

r

∞∑

k=0

Pk(cos α)
(ρ

r

)k
(3.4)

where the Pk(cos α) are the Legendre polynomials,

cos α =
~ρ · ~r
rρ

=
−x

ρ
(3.5)

and α is the angle between ~r1 and the relative position vector ~ρ. The La-

grangian L is then equal to K − U :

L(0) =
1

2
{ẋ− θ̇y + ṙ)2 + (rθ̇ + θ̇x + ẏ)2 + ż}+

µ

r

∞∑

k=0

Pk(cos α)
(ρ

r

)k

(3.6)

Using Legendre polynomials up to k = 3 and substituting (3.5) into (3.6) the

following Lagrangian is obtained:

L(0) =
1

2
((ẋ− θ̇y+ ṙ)2 +(rθ̇+ θ̇x+ ẏ)2 + ż+

µ

r
− µx

r2
+

3µx2

2r3
− µ(x2 + y2 + z2)

2r3
)

(3.7)
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In [8], Kasdin and Gurfil, proceed using simplifying calculations by taking

a normalization of θ̇ and r, here we proceed and calculate the Hamiltonian

without normalization.

3.2 Deriving the Hamiltonian Vector Fields

To calculate the Hamiltonian for the Cartesian system first derive the canon-

ical momenta from the Lagrangian L(0):

px =
∂L(0)

∂ẋ
= ẋ− ωy + ṙ

py =
∂L(0)

∂ẏ
= ẏ + ω(r + x)

pz =
∂L(0)

∂ż
= ż

(3.8)

then using the Legendre transformation H =
∑

q̇ipi − L the Hamiltonian

corresponding to the Clohessy-Wiltshire (CW) equations, called the unper-

turbed Hamiltonian is given by:

H(0) =
∑

q̇ipi − L(0) (3.9)

Therefore, the Hamiltonian function is:

H(0) =
1

2
(−p2

x − p2
y + p2

z + 2py(py − rθ̇ − θ̇x) + 2px(px − ṙ + θ̇y)

+
2µ

r
+

2µx

r2
− 3µx2

r3
+

µ(x2 + y2 + z2)

r3
)

(3.10)

From the Hamiltonian function, which is itself an integral of motion, the

Hamiltonian vector fields can be calculated using Hamilton’s canonical equa-

tions:

q̇i =
∂H

∂pi

ṗi = −∂H

∂qi

(3.11)
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where q ∈ R3 are the degrees of freedom in the configuration space and p ∈ R3

is the conjugate momenta. Calculating the corresponding Hamiltonian vector

fields yields:

ẋ = px + ωy − ṙ

ẏ = py − ω(r + x)

ż = pz

ṗx = − µ

r2
+

2µx

r3
+ pyθ̇

ṗy = −µy

r3
− pxθ̇

ṗz = −µz

r3

(3.12)

These equations are equivalent to the well known HCW equations (with ec-

centricity of the reference orbit), see Appendix A for proof. In the CW equa-

tions, it is known that the constraint on the initial conditions ẏ0 = −2ωx0

gives the desired periodic motion. Substituting this constraint into (3.8) gives

the corresponding constraint for periodic motion in the Hamiltonian vector

fields, py0 = ω(a − x0), which is verified to give periodic motion through

simulation of the Hamiltonian equations of motion (see section 5). This

derivation is useful (as with the HCW equations) can fit into well established

linear control theory. However, unlike the classical HCW formulation the

equations can account for non Keplarian forces by adding perturbations to

the Hamiltonian. However, for the purposes of this work, it is necessary to

derive the nonlinear Hamiltonian equations of motion. The nonlinear model

gives significantly more accurate and precise results than the HCW model.
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4 The Nonlinear Hamiltonian and perturba-

tions

4.1 Nonlinear Gravitational Potential

Following the derivation in Section 3, but instead of computing the Legen-

dre expansion in the gravitational potential equation (3.4), the nonlinear

equations are obtained by writing:

‖~r2‖ = ((r + x)2 + y2 + z2)1/2 (4.1)

Then the Hamiltonian function is calculated as

H(0) = −p2
x

2
−p2

y

2
+

p2
z

2
+py(py−θ̇r−θ̇x)+px(px−ṙ+θ̇y)− µ

((r + x)2 + y2 + z2)1/2

(4.2)

The corresponding Hamiltonian equations of motion derived with the aid of

Mathematica are given in Appendix B.

4.2 Earth oblateness perturbations

In addition to the nonlinear gravitational potential, it is necessary to account

for the zonal harmonics in the gravitational potential. The J2 harmonic

is known to be the most significant. Assuming that the earth is axially

symmetric, the external potential due to the gravitational zonal harmonics

is given by [11]:

U =
∞∑

k=2

Uk = − µ

‖~r2‖
∞∑

k=2

Jk

(
Re

‖~r2‖
)k

Pk(cos φ) (4.3)

where φ is the follower spacecraft colatitude angle

cos φ =
Z

‖~r2‖ , (4.4)
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Z is the normal deflection in an inertial, geocentric-equatorial reference frame

and Jk(k = 2, 3..) are constants of the zonal harmonics. Assuming that the

reference orbit is not inclined relative to the equatorial plane, so that Z = z.

Then the J2 term only is represented by the equation:

UJ2 = − µJ2

2 ‖r2‖
(

Re

‖r2‖
)2 (

3
z2

‖r2‖2 − 1

)
(4.5)

and substituting (4.6) into (4.5)

‖r2‖ = ((r + x)2 + y2 + z2)1/2 (4.6)

simplifying and rearranging gives

H(1) =
J2R

2
eu(−(r + x)2 − y2 + 2z2)

2((r + x)2 + y2 + z2)5/2
(4.7)

Eccentricity is accommodated into the model as r, ṙ and θ̇ are dependent

on the reference orbit which can be initialized with a particular eccentricity.

This analysis extends to higher order zonal harmonics.

4.3 The reference orbit

Now that the study model is in place, it is necessary to define θ̇, r and ṙ

independently of the Hamiltonian system and treat them as inputs into the

Simulink model. In the simple case of an unperturbed Keplarian orbit there

are a number of ways to simulate the reference orbit. Using fundamental

orbital mechanics describing planetary motion in a local vertical-local hori-

zontal (LVLH) reference frame shown in Figure 2, where E is the eccentric

anomaly and assuming that the zonal harmonics do not affect the reference

orbit, the radius and angular velocity of the reference orbit can be written

as

r =
a(1− e2)

1 + e cos θ

θ̇ =
ω(1 + e cos θ)2

(1− e2)3/2

(4.8)
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Figure 2: Equatorial plane, true and eccentric anomaly

This formulation was used in [4] in the context of relative motion with eccen-

tricity. Although these equations cannot be solved analytically, it is possible

to use a numerical integrator within the Simulink environment and then im-

plement them as inputs into the Hamiltonian vector fields as the simulation

is running. The advantage of this method is its simplicity in implementation.

Another method used to calculate these input parameters is to numerically

integrate Kepler’s equation. The mean anomaly and its time derivative are

denoted M and Ṁ respectively, the eccentric anomaly E is calculated using

Kepler’s equation, see [13]:

E = M + e sin E (4.9)

where e is the eccentricity of the reference orbit. However, this equation is

transcendental in the eccentric anomaly E, thus no closed form solution for

E is possible. Differentiating (4.9) yields

Ė = Ṁ + Ėe cos E (4.10)
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and rearranging gives

Ė =
Ṁ

(1− e cos E)
(4.11)

This equation is then solved using a numerical integrator in Simulink, giving

both Ė and E. The true anomaly v is then given by the equation:

tan
(v

2

)
=

√
1 + e

1− e
tan

(
E

2

)
(4.12)

and the radius r from:

r =
a(1− e2)

1 + e cos v
(4.13)

where v̇ and ṙ are calculated by the time derivatives of (4.12) and (12.12),

respectively:

v̇ =
2
√

1+e
1−e

Ė

1 +
(

1+e
1−e

)− (
(

1+e
1−e

)− 1) cos E
(4.14)

ṙ =

√
1 + e

1− e

a(1− e2)v̇ sin v

1 + e cos v
(4.15)

The advantage of using this method is that the initial conditions are stated in

terms of the orbital elements e, a and M . For perturbations to the reference

orbit such as J2, the nonlinear propagator STK was used to compute the the

reference orbit time dependent variables.

5 Implementation in Simulink

The constants of motion are:

µ = 3.986005× 105 km3/s2

Re = 6378.140 km

J2 = 0.00108263

(5.1)
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The condition for periodic solutions in the CW equations are implemented

into each model i.e. py0 = θ̇0(r0− x0). Then setting the initial conditions as:

x0 = 10 km

y0 = 10 km

z0 = 10 km

px0 = 0 kg m/s

py0 = θ̇0(r0 − x0) kg m/s

pz0 = 0 kg m/s

(5.2)

with the reference orbit initialized at:

r0 = 6700

ṙ0 = 0

θ0 = 0

θ̇0 = 0.001151213

(5.3)

These initial conditions give a closed orbit as shown in Figure 3 shows the rel-

ative motion for the Hamiltonian equations of motion. When perturbations

are added to the linearized CW equations for the previous initial conditions

the relative trajectory will drift. For the purposes of quantitative compar-

ison of the different trajectories, the initial drift dT was calculated when

appropriate as follows:

dT =
√

(x(T )− x(0))2 + (y(T )− y(0))2 + (z(T )− z(0))2 (5.4)

where T is the approximate period, x is the radial distance, y is the along

track distance and, z the out of plane distance. Notice, however, that the

drift rate may change from orbit to orbit, and that a trajectory that initially

appears to be drifting may actually be bounded. Introducing eccentricity
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Figure 3: CW - Periodic solution for linearized H(0)

of the reference orbit into the model where e = 0.005 and a = 6700km,

initializes the reference orbit at apogee where:

r0 = 6733.5

ṙ0 = −1.582e− 11

θ0 = 0

θ̇0 = 0.0011397

(5.5)

The simulation was run for 5 orbits as shown in Figure 4. Figure 5 dis-

plays the simulation for 5 periods with eccentricity of 0.005 and nonlinear

gravitational terms. For the large relative distance considered, the effect of

nonlinearities is significant. The drift for the first few orbits is approximately

1.4 km per orbit. The J2 perturbation with an eccentricity of e = 0.005 but

neglecting the nonlinear gravitational terms, were run for 20 orbits. The ini-

tial conditions of the reference orbit given by the STK nonlinear propagator
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Figure 4: Eccentric orbit using CW initial conditions - 5 orbits with a drift

of approximately 1km per orbit
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Figure 5: Eccentricity and nonlinear gravitational terms using the CW initial

conditions - 5 orbits. The initial drift is approximately 1.4 km per orbit.
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Figure 6: Case with eccentricity and the J2 perturbation using the CW initial

conditions - drift is approximately 3 km per orbit

were:

r0 = 6733.5

ṙ0 = −2.8383× 10−5

θ0 = 0

θ̇0 = 0.0011398

(5.6)

Finally, all of the perturbations in the ‘study model’ were considered, the

plot is shown in Figure 7.
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Figure 7: The study model with eccentricity, nonlinear gravitational terms

and J2, using the CW initial conditions where the drift is approximately 3.3

km per orbit.
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6 Numerical method for locating periodic or

quasi-periodic orbits

In the Hamiltonian formulation of the CW equations, there are explicit initial

conditions that give periodic relative motion. As perturbations are added,

the same initial conditions will no longer yield closed orbits. However, a

numerical method proposed by Marcinek and Pollak [9], based on a variant

of Newton’s method, may locate stable or unstable periodic orbits. Newton

method’s has previously been applied to two degrees of freedom continuous

systems in [12], where it has been shown that for such systems one may locate

all periodic orbits using this method. However, the relative satellite motion

model has three degrees of freedom and the increased dimensionality makes

the search more complex. Nevertheless, one advantage of the Hamiltonian

formulation for relative satellite motion is that a good initial guess for New-

ton’s method is already given for the linear Hamiltonian. This provides a

good initial guess and as complexity is added, new initial conditions will be

obtained in a stepwise manner.

Here the variant of Newton’s method is presented for a three degree of free-

dom model. The purpose of this method is to find a periodic orbit which has

period T ∗, i.e. it satisfies the condition

X∗(T ∗) = X∗(0), (6.1)

where X = [x, px, y, py, z, pz]
T describes a point in the phase space. The “ ∗ ”

notation is used to signify points on the periodic orbit. Newton’s method

starts at a point X(t) initiated at t = 0 on a surface of section, e.g. y = 100

km, and the trajectory returns to the surface of section at some later time

T . An assumption of this method is that the initial trajectory is close to the

periodic orbit X∗(t). This means that the trajectory almost closes in upon
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itself at time T , which is itself approximately T ∗. For example, using the

initial conditions for periodic solutions in the linear Hamiltonian and then

adding the higher order terms of the gravitational potential, will initialize a

trajectory close to a periodic orbit.

6.1 Monodromy matrix variant of Newton’s method

As the approximate orbit is close to the assumed periodic orbit, the seper-

ation between the two can be calculated using the equations of motion lin-

earized about the approximate orbit X(t) [12]. This is the analog of using the

derivative of the function at a point close to its zero in Newton’s Method. Let

δX(t) denote a small deviation about the approximate orbit. The linearized

equations of motion for this deviation are

δẊ(t) = H
′′
(t)δX(t), (6.2)

where H
′′
ij(t) = ∂2H/∂Xj∂Xi is the 6× 6 Hessian matrix of the Hamiltonian

with respect to the coordinates and momenta evaluated along the approxi-

mate trajectory, also called the force constant matrix. The 6×6 monodromy

matrix M(t) is then defined such that

δX(t) = M(t)δX(0) (6.3)

and M(0) = I, the unit matrix. The approximate monodromy matrix M is

defined as M ≡ M(T ). Therefore, the monodromy matrix is defined as

M = eH′′(T )T (6.4)

Then the central equation of Newton’s method is given as:

X∗(T )− X(T ) ' X∗(0)− X(T ) ' M[X∗(0)− X(0)] (6.5)
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rearranging gives

X(T )− X(0) = (I −M)[X∗(0)− X(0)] (6.6)

This result gives an iterative improvement to the choice of initial conditions

for the periodic orbit

X∗(0) = X(0) + (I −M)−1[X(T )− X(0)] (6.7)

In practice, one encounters a problem when applying the method to conser-

vative systems, because for any trajectory there are always two directions in

phase space which are marginally stable. One is along the trajectory and

the other is perpendicular to the energy surface of the orbit. This implies

that the (I −M) matrix is singular. For the purposes of this work the sin-

gular matrix can be inverted using the Moore-Penrose pseudo-inverse (pinv

command in Matlab). Alternative methods can be used, such as the manip-

ulations described in [9], however, using the pseudo-inverse works effectively

in this case.

6.2 Energy conservation constraint

The method described so far was implemented for the model with eccentricity,

for which it did find closed periodic orbits. However, as the orbits are weakly

unstable, the search would continue unbounded and new initial conditions

found in the search would be extremely large. For this reason it is necessary

to include a bound on the numerical search. Because this is a Hamiltonian

system, there is a natural bound described by the Hamiltonian function.

An improved guess for the periodic orbit vector X∗(0) uses the additional

constraint of energy conservation δH = 0.

δH =
∂H

∂x
δx +

∂H

∂px

δpx +
∂H

∂y
δy +

∂H

∂py

δpy +
∂H

∂z
δz +

∂H

∂pz

δpz = 0 (6.8)
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evaluated at time T . Therefore,

(
∂H

∂x
,
∂H

∂px

,
∂H

∂y
,
∂H

∂py

,
∂H

∂z
,
∂H

∂pz

)
. (δx, δpx, δy, δpy, δz, δpz) = 0 (6.9)

The left hand vector from (6.9) can replace a row in the (I −M) matrix and

the corresponding row of the vector (X(T )−X(0)) is set to zero.

7 Search for periodic or quasi-periodic solu-

tions

In the following subsections, the variant of Newton’s method described in

Section 4 was applied to locate periodic or quasi-periodic relative satellite

motion.

7.1 Eccentricity

Newton’s method is successful in finding initial conditions that give near

closed periodic solutions for the linear Hamiltonian with eccentricity, where

the reference orbit is initialized at

r0 = 6733.5

ṙ0 = −1.582× 10−11

θ0 = 0

θ̇0 = 0.0011397

(7.1)

This initializes the reference orbit at apogee with an eccentricity of e = 0.005,

the semi-major axis a = 6700km. The following initial conditions give a

near closed orbit, initial drift is approximately 0.001km per orbit. Figure 8
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Figure 8: Eccentric orbit corrected - periodic orbit drift is reduced to 0.000983

km per orbit

illustrates this orbit with drift of approximately 0.001km per orbit.

x0 = 12.2255

y0 = −3.4640

z0 = 9.9987

px0 = 0.0041

py0 = 7.6602

pz0 = 0

(7.2)

Using the canonical transformations

ẋ0 = px0 + θ̇0y0 − ṙ0

ẏ0 = py0 − θ̇0(r0 + x0)

ż0 = pz0

(7.3)
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the initial conditions in cartesian coordinates are calculated as:

x0 = 12.2255

y0 = −3.4640

z0 = 9.9987

px0 = −1.58× 10−4

py0 = −0.0279

pz0 = 0

(7.4)

7.2 Eccentricity and nonlinear gravitational terms

Newton’s method greatly reduces the drift of the trajectory as is shown in

Figure 9. Although an exact periodic orbit could not be found the drift is

approximately 0.00084 km per orbit, using the following initial conditions:

x0 = 12.3306

y0 = −4.2202

z0 = 9.9989

px0 = 0.0049

py0 = 7.6601

pz0 = 0

(7.5)

and in Cartesian coordinates

x0 = 12.3306

y0 = −4.2202

z0 = 9.9989

ẋ0 = 9.0238× 10−5

ẏ0 = −0.0281

ż0 = 0

(7.6)
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Figure 9: Eccentricity and nonlinear order gravitational terms with corrected

initial condition. The initial drift is approximately 0.00084 km per orbit

7.3 J2 perturbation with eccentricity

The initial conditions of the reference orbit given by the STK propagator

are:

r0 = 6733.5

ṙ0 = −2.8383× 10−5

θ0 = 0

θ̇0 = 0.0011398

(7.7)

Applying Newton’s method finds initial conditions that give a bounded

29



solution as shown in Figure 10, where:

x0 = 10.1631

y0 = 10.0012

z0 = 9.9901

px0 = 0

py0 = 7.663

pz0 = −0.0003

(7.8)

and in Cartesian coordinates:

x0 = 10.1631

y0 = 10.0012

z0 = 9.9901

ẋ0 = 0.0114

ẏ0 = −0.0233

ż0 = −0.0003

(7.9)

No closed periodic orbits could be found with J2 and eccentricity.

7.4 The study model with eccentricity, nonlinear grav-

itational terms and the J2 perturbation

Using the initial conditions from (7.7) and applying Newton’s method found

the initial conditions below that give a bounded, quasi-periodic orbit. Figure

11 shows the relative trajectory for the nonlinear study model, which includes
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Figure 10: J2 and eccentricity with corrected initial conditions. The trajec-

tory is bounded.

eccentricity of 0.005, nonlinear gravitational terms and J2:

x0 = 9.6556

y0 = 10.0036

z0 = 9.9681

px0 = 0

py0 = 7.6636

pz0 = −0.0012

(7.10)
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Figure 11: The nonlinear study model with eccentricity, nonlinear gravita-

tional terms and J2 - the trajectory is bounded.

and in cartesian coordinates

x0 = 9.6556

y0 = 10.0036

z0 = 9.9681

ẋ0 = 0.0114

ẏ0 = −0.0221

ż0 = −0.0012

(7.11)

It is desirable to evaluate the performance of Newton’s method with wider

formations. The wider simulation was set at [x0, y0, z0] = [50km, 50km, 50km]

as the initial condition in Newton’s method. The Newton method successfully
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located a bounded trajectory (20 orbit), with the following initial conditions:

x0 = 49.04

y0 = 50.01

z0 = 49.8072

px0 = 0

py0 = 7.6181

pz0 = −0.0073

(7.12)

and in cartesian coordinates:

x0 = 49.04

y0 = 50.01

z0 = 49.8072

ẋ0 = 0.0570

ẏ0 = −0.1125

ż0 = −0.0073

(7.13)

which gave the trajectory for 20 orbits shown in Figure 12.

8 Principal Component Analysis

Bounded or slowly drifting trajectories found using Newton’s method, are

not necessarily periodic. Using these trajectories as a reference in a real sys-

tem would involve a real time simulation of the relative motion. The control

methodology requires that for practical implementation, the reference tra-

jectory be periodic. A statistical technique known as principle component

analysis (PCA) was used to project the bounded or slowly drifting trajectories

onto planar and almost closed periodic orbits. Once fitted using sinusoidal
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Figure 12: Nonlinear study model with eccentricity, nonlinear gravitational

terms and J2 for approximately 100km mean separation - the trajectory

appears bounded for 20 orbits.
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functions, as described below in this report, the trajectories are suitable to

be used as reference trajectories for control purposes.

PCA is a powerful tool (see [20]) for analyzing data and has found application

in fields such as face recognition and image compression, and is a common

technique for finding patterns in data of high dimension. PCA rotates the

coordinate system such that the maximum variability is aligned along the

axis of the new system. The first principal component accounts for as much

of the variability in the data as possible, and in the direction orthogonal to

the subspace spanned by the former components. The bounded trajectory

(20 orbits) data is used to obtain the principle components, the principal

components are then used to rotate the first period of the trajectory. Fig-

ure 13 shows this projected trajectory together with the original bounded

trajectory, illustrated for the ‘study model’ with initial conditions (7.10).

PCA was used to obtain a data set for the reference trajectory, however

it is also necessary to project the corresponding canonical momenta, as the

method used for closed-loop control requires full state feedback. As the data

set gives position and time it is simple to calculate the velocity components

using Matlab and therefore using the canonical transformation (7.3) calculate

the projected canonical momenta. The method of PCA is a useful tool to

determine practical reference trajectories for control implementation.

9 The full model

In this project, a set of study models with increasing complexity have been

used to find periodic or quasi-periodic trajectories of relative satellite motion,

which in turn can be used to determine a reference trajectory for closed-

loop control simulations. A further model, known in this project as the full
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Figure 13: Projected Reference Trajectory - grey trajectory illustrates the

bounded solution used to obtain the Principle Components the black trajec-

tory illustrates the projected trajectory.
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model, is used to simulate the relative motion under closed loop control.

The full model includes higher order gravitational terms, zonal harmonics,

eccentricity, and actuation variables to manipulate the relative motion to

follow the reference trajectory.

The action of satellite thrusters can be modelled as impulsive changes

to the satellites’ velocities. In [17] the control inputs are chosen to be the

impulsive velocity increments [∆ẋ, ∆ẏ, ∆ż]. In the Hamiltonian formulation

the control actuators are implemented as impulsive canonical momenta in-

crements [ux, uy, uz] = [∆px, ∆py, ∆pz]. Given the canonical transformation

(7.3) it is easy to see that impulsive canonical momenta increments are equiv-

alent to impulsive velocity increments. The equations of motion for the full

model are given in Appendix C.
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10 Closed Loop Control

In order to evaluate the effect of the quality of the model used to generate

the periodic reference trajectory, a study involving closed loop control of a

simulated master/follower formation was performed.

10.1 Linearization of the relative motion dynamics

The nonlinear relative motion dynamics with actuation can be written as

follows:

Ẋ(t) = f(X(t)) + B̄u(t) (10.1)

where X = [x, y, z, px, py, pz]
T is the state vector consisting of relative

positions and canonical momenta, and u = [ux, uy, uz]
T is a vector of ac-

tuations (in units of acceleration), f(X) is a smooth vector field, and B̄ is

given by:

B̄ =




0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




(10.2)

It is assumed that the relative motion is controlled by adjusting the mo-

tion of the follower satellite only.

Define a reference trajectory Xr(t) ∈ <6 over a time interval t ∈ [t0, tf ],

which approximately satisfies

Ẋr(t) ≈ f(Xr(t)) (10.3)
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Notice that it is reasonable to make this approximation as the reference

trajectory to be used approximates a solution of the relative motion dynamics

given by (10.1) with u = 0.

Consider small deviations x(t) from Xr(t), such that x(t) = X(t)−Xr(t).

Then the perturbed dynamics with actuation are given by:

Ẋ(t) = Ẋr(t) + ẋ(t) = f(Xr(t) + x(t)) + B̄u (10.4)

Using a Taylor series expansion about Xr(t) and neglecting terms of order

higher than one, gives:

Ẋr(t) + ẋ(t) ≈ f(Xr(t)) +

[
∂f

∂x

]∣∣∣∣
Xr(t)

x(t) + B̄u (10.5)

But since Ẋr(t) ≈ f(Xr(t)), it is possible to write the following expression

for the deviations from the reference:

ẋ(t) ≈ Ā(t)x(t) + B̄u(t) (10.6)

where

Ā(t) =

[
∂F

∂x

]∣∣∣∣
Xr(t)

(10.7)

To simplify the control design, it is assumed that Ā(t) does not change

much along the reference trajectory so that, for the purposes of control design,

the following time invariant model is assumed:

ẋ = Āx(t) + B̄u(t) (10.8)

where

Ā =

[
∂F

∂x

]∣∣∣∣
X0

(10.9)

and X0 is a suitable point that belongs to the reference trajectory Xr(t).

For the purposes of this study, X0 was defined as the initial point of the
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trajectory Xr(t0). It should be noted that in this application tighter control

should be possible by considering the changes in Ā(t) along the reference

trajectory.

10.2 Model discretisation

Consider that the actuation is performed using thrusters which provide im-

pulsive thrust with a sampling interval Ts and a duration d, such that it is

reasonable to assume that the control vector u is defined as follows:

u(t) =





uk/d tk ≤ t ≤ tk + d

0 tk + d < t < tk + Ts

(10.10)

where k is a sampling index, tk is a sampling instant, such that tk = kTs,

and uk = [∆vx, ∆vy, ∆vz]
T is the control signal (in velocity units) provided

by a discrete-time controller. The magnitude ||uk|| =
√

∆v2
x + ∆v2

y + ∆v2
z

will also be known as DeltaV in this report, while the sum:

k∑

k=0

||uk|| (10.11)

will be called accumulated DeltaV.

In the limit case when d → 0 and Ts > d, a control signal defined by

(10.10) becomes impulsive control of the form:

u(t) = ukδ(t− tk), tk ≤ t < tk+1, k = 0, 1, 2, . . . (10.12)

where δ(t− tk) is the Dirac delta function, defined by:

δ(t− tk) = 0, t 6= tk (10.13)

and ∫ ∞

−∞
δ(τ)dτ = 1 (10.14)
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In the case where the sampling period is the same as the pulse duration

Ts = d, then the control signal is u(t) = uk/d for tk ≤ t ≤ tk+1, such that

the control signal is constant between sampling instants, which is a common

assumption in discrete-time control.

To discretise the linear time invariant model (10.8), the state at the next

sampling instant xk+1 = x(tk+1) = x(tk + Ts) is found given the state at

the current sampling instant xk = x(tk) and the control action during the

sampling interval t ∈ [t, t + Ts] (see [18]):

x(tk+1) = eĀTsx(tk) +

∫ tk+1

tk

eĀ(tk+1−τ)B̄u(τ)dτ (10.15)

But since u(t) = uk/d for tk ≤ t ≤ tk + d and u(t) = 0 for tk + d ≤ t ≤ tk+1,

then

x(tk+1) = eĀTsx(tk) +

∫ tk+d

tk

eĀ(tk+1−τ)dτB̄uk/d (10.16)

Using the change of variables τ = r + tk

x(tk+1) = eĀTsx(tk) +

∫ d

0

eĀ(tk+1−tk−r)drB̄uk/d

x(tk+1) = eĀTsx(tk) +

∫ d

0

eĀ(Ts−r)drB̄uk/d

x(tk+1) = eĀTsx(tk) + eĀTs

∫ d

0

e−ĀrdrB̄uk/d

(10.17)

So that the discrete time model can be expressed as follows:

xk+1 = Axk + Buk (10.18)

where

A = eĀTs

B = eĀTs

∫ d

0

e−ĀrdrB̄/d
(10.19)
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10.3 Discrete Linear Quadratic Regulator with impul-

sive actuation

The control technique employed was the discrete linear quadratic regulator

(LQR) [19] with impulsive actuation. The LQR technique was chosen due to

its ability to handle the problem of formation flying control, as has already

been shown in the literature [17], and also due to its simplicity for practical

implementation purposes. Impulsive control was chosen to approximate the

way actual satellite thrusters work.

Suppose that in order to track a reference trajectory, the following quadratic

performance index is minimised:

J = 1
2

∞∑
k=0

[
xT

k Qxk + uT
k Ruk

]
(10.20)

Assume that Q is a positive semidefinite matrix and that R is positive

definite. It is also assumed that the pair (A, B) is stabilisable and that the

pair (A,
√

Q) is observable [19].

The minimisation of (10.20) subject to the linear discrete-time dynamics

(10.18) can be achieved by the well know Ricatti solution [19]. First, find

the solution of the following algebraic Ricatti equation:

S = AT
[
S − SB(BT SB + R)−1BT S

]
A + Q (10.21)

The state feedback gain is given by:

K =
(
BT SB + R

)−1
BT SA (10.22)

Notice that, given values of A, B, Q and R, matrices S and K can be

computed off-line (using for example the dlqr command in Matlab), so that

the optimal control law is a simple state feedback given by:

uk = −Kxk (10.23)

42



Zero−Order
Hold2

state_error

To Workspace3

u_LQR

To Workspace2

u_impulses

To Workspace1

Output

Save variables

Saturation

impulsive_control

S−Function1

full_model

S−Function

Out1

Reference for control

K*u

LQR Gain

master_ref

From
Workspace

Add

Figure 14: Simulink diagram of the closed loop simulation of relative satellite

motion.

In term of the original states X(t) and the reference trajectory Xr(t), the

control law is given by:

uk = −K(X(tk)−Xr(tk)) (10.24)

10.4 Results

Relative satellite motion has been simulated in closed loop using the im-

pulsive LQR controller described above. The ‘full model’ used to simulate

the dynamics of the system is similar to the most complex ’study model’,

including gravitational nonlinearities, eccentricity and J2 perturbations, and

in addition including the actuation. The simulations were performed in the

Matlab/Simulink environment. Figure 14 shows the Simulink system em-

ployed for the closed-loop simulations.

In order to implement the reference trajectories for control as functions

of time in non-trivial cases, each state variable trajectory projected by PCA

was fitted to a sinusoidal function of time of the form:

ri(t) = ai sin(ωit + φi) + bi, i = 1, . . . , 6 (10.25)
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Table 1: Cases under consideration according to the effects considered in

the model used to generate the reference trajectory for control, the model

used to generate the controller, the sampling period of the controller, and

the control weighing matrix.

Case Ref. Traj. Controller Sampling (s) R

1 HCW HCW 4 103I[3×3]

2 e e 4 105I[3×3]

3 e+NL e+NL 4 105I[3×3]

4 e+J2 e+J2 4 109I[3×3]

5 e+NL+J2 e+NL+J2 4 109I[3×3]

6 e+NL+J2 e+NL+J2 60 109I[3×3]

7 e+NL+J2 e+NL+J2 1 109I[3×3]

8 e+NL e+NL+J2 4 109I[3×3]

9 e+NL+J2 e+NL 4 109I[3×3]

10 e+NL+J2 (not projected) e+NL+J2 4 109I[3×3]

Key: HCW= Hill–Clohessy–Wiltshire model, e= eccentricity, NL= gravitational

nonlinearities, J2= zonal harmonic effect

This simple function structure provided a good fit, with appropriate val-

ues for the parameters (ai, ωi, φi, bi), in all cases considered.

The cases considered are summarised in Table 1. In all cases, except

from case 1, the eccentricity value considered was e = 0.005. In all cases

the duration of the thrust pulses was d = 1 s. The state weighing matrix

was chosen as Q = I[6×6], while the values of the control weighing matrix are

given in Table 1.

Figures 15 to 30 show the simulation results for all cases. Table 2 shows
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Table 2: Accumulated DeltaV requirement per orbit, and maximum tracking

error

Case DeltaV per orbit (km/s) Max. tracking error (km)

1 0.015171 1.0190

2 0.015758 1.1475

3 0.015707 1.1603

4 0.0079409 1.0019

5 0.00599 1.2710

6 0.0081389 5.3957

7 0.0095239 0.7155

8 0.065304 10.6493

9 0.011417 0.8046

10 0.00037039 0.0455

for each case the required total DeltaV per orbit of relative motion, as well

as the maximum tracking error magnitude.

10.5 Analysis of Control Results

From Table 2, comparing the results of cases 1 to 5, it can clearly be seen

how the use of a model including the J2 perturbation as well as eccentricity

and nonlinearities provided the least DeltaV value per orbit, for a similar

tracking error performance. The reduction in the DeltaV value achieved in

case 5 compared with cases 1 to 3 is about 61%, while the reduction in DeltaV

value achieved in case 5 compared with case 4 is about 24%.

Comparing cases 5, 6 and 7, it can be seen that increasing the sampling

time from 4 s to 60 s significantly increased the tracking error and also
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increased the DeltaV per orbit, while reducing the sampling time from 4 s to

1 s reduced the tracking error by 43 % but increased the DeltaV value per

orbit by 35.9 %.

Comparing cases 8 and 5, it can be observed that using a reference trajec-

tory of a less detailed model (with eccentricity and nonlinearities but without

the J2 effect) with a controller generated from a model that included the J2

effect, resulted in a significant increase in the tracking error, together with

an increase in the DeltaV requirement per orbit.

Comparing cases 9 and 5, it can be seen that using a controller obtained

from a less detailed model (with eccentricity and nonlinearities but without

the J2 effect) and a reference trajectory generated from a model that included

the J2 effect, resulted in an increase of the DeltaV value of about 99%, while

the tracking error decreased by about 36%.

Case 10 used a non–projected reference trajectory, as simulated by the

’study model’ with a fixed step size 4th order Runge Kutta integrator with

a step size of 1 s, while the closed loop system was simulated with a variable

step size Runge-Kutta integrator. Given that in this work the ’study model’

and the ’full model’ consider the same effects, the fact that some very small

control action was required is explained by the difference in the integrator

used. It should be noted, however, that this kind of reference trajectory

would not be very practical as it is not periodic, unless it is intended to be

used for short periods. It would be ideal if extra effects such as air drag

were considered in the ’full model’. However, extra effects could not be

implemented in this project due to time constraints.
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Figure 15: Case 1: Reference and controller from HCW equations. Relative

position trajectory
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Figure 16: Case 1: Reference and controller from HCW equations. Position

error
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Figure 17: Case 2: Reference and controller from model including eccentric-

ity. Relative position trajectory
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Figure 18: Case 2: Reference and controller from model including eccentric-

ity. Magnitude of tracking error
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Figure 19: Case 3: Reference and controller from model including eccentricity

and nonlinearities. Relative position trajectory
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Figure 20: Case 3: Reference and controller from model including eccentricity

and nonlinearities. Magnitude of tracking error
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Figure 21: Case 4: Reference and controller from model including eccentricity

and J2. Relative position trajectory
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Figure 22: Case 3: Reference and controller from model including eccentricity

and J2. Magnitude of tracking error
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Figure 23: Case 5: Reference and controller from model including eccentric-

ity, nonlinearities and J2. Relative position trajectory
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Figure 24: Case 5: Reference and controller from model including eccentric-

ity, nonlinearities and J2. Accumulated DeltaV
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Figure 25: Case 5: Reference and controller from model including eccentric-

ity, nonlinearities and J2. Magnitude of tracking error
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Figure 26: Case 6: Reference and controller from model including eccentric-

ity, nonlinearities and J2, sampling time 60 s. Relative position trajectory
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Figure 27: Case 7: Reference and controller from model including eccentric-

ity, nonlinearities and J2, sampling time 1 s. Relative position trajectory
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Figure 28: Case 8: Reference from a model including eccentricity and nonlin-

earities, controller from model including eccentricity, nonlinearities and J2.

Relative position trajectory
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Figure 29: Case 9: Reference from a model including eccentricity and nonlin-

earities and J2, controller from model including eccentricity, nonlinearities,

but not J2. Relative position trajectory

−15
−10

−5
0

5
10

15

−40

−30

−20

−10

0

10

20
−10

−5

0

5

10

15

radial direction (km)

Simulated relative position trajectory and reference

along track direction (km)

ou
t o

f p
la

ne
 d

ire
ct

io
n 

(k
m

)

Figure 30: Case 9: Non-projected (natural) reference obtained from a model

including eccentricity and nonlinearities and J2, controller from model in-

cluding eccentricity, nonlinearities and J2. Relative position trajectory
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11 Conclusions

In this report a Hamiltonian formulation of relative satellite motion is pre-

sented which in its linear form is shown to be equivalent to the well known

HCW equations. This formulation is useful as it can be fit into well known

linear control theory and explicit solutions can be obtained. The advantage of

the Hamiltonian formulation is that perturbations can be added with ease.

For the implementation of the numerical method a nonlinear hamiltonian

study model is derived which incorporates the eccentricity of the reference

orbit, the nonlinear gravitational terms and J2.

A variant of Newton’s method is presented and applied to locate periodic

or quasi-periodic relative satellite motion. Advantages of using Newton’s

method to search for periodic or quasi-periodic relative satellite motion in-

clude simplicity of implementation, repeatability of solutions due to its non-

random nature, and fast convergence.

The method was able to find near closed periodic orbits in the linear

model with eccentricity only. For the nonlinear model with eccentricity, al-

though no closed solutions could be found the drift was greatly reduced.

When considering the linear model with J2, a bounded quasi-periodic so-

lution was found. When nonlinear gravitational terms, eccentricity and J2

were considered together, the application of the Newton’s method located a

bounded quasi-periodic solution. These initial conditions found were verified

using the well known STK propogator to give bounded solutions.

Given that the use of bounded or drifting trajectories as control refer-

ences carries practical difficulties over long-term missions, a method based on

principal component analysis was developed to project a bounded or slowly

drifting trajectory found using Newton’s method, to a plane of defined by

the first two principal components. In this way a planar trajectory can be
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produced which is almost closed. The state variables on this projected trajec-

tories can in turn be fitted to sinusoidal functions to provide closed periodic

trajectories that preserve useful information about the original bounded or

slowly drifting trajectory. These projected and fitted periodic trajectories

were used as reference trajectories in closed loop control simulations. The

results obtained indicate that the quality of the model employed for gen-

erating the reference trajectory used for control purposes has an important

influence on the resulting amount of fuel required to track the reference tra-

jectory. The model used to generate LQR controller gains also has an effect

on the efficiency of the controller. The sampling time employed is also impor-

tant, as the shorted the sampling interval, the tighter the control. Finally,

as in all control applications, careful consideration must be given to tuning

the controller.

12 Future Work

The advantage of the Hamiltonian formulation is that it is easy to add com-

plexity to the model. Therefore, higher order zonal harmonics can be added

on to the hamiltonian function. The model incorporates air drag but uses a

simplified atmospheric density model. An improvement to the full would be

to incorporate a more complex atmospheric model. One avenue for further

study would be to investigate the effect of an inclined reference orbit on the

type of solutions found using the Newton method.
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Appendix A - Equivalence of the HCW equa-

tions and the hamiltonian equations of motion

For the purposes of this proof, the z component is not considered as it is

decoupled and trivial to prove. The HCW equations of motion are:

ẍ− 2θ̇ẏ − θ̈y − θ̇2x− 2
µ

r3
x = 0

ÿ + 2θ̇ẋ + θ̈x− θ̇2y +
µ

r3
y = 0

(12.1)

The Hamiltonian equations of motion equivalent to (12.1) are:

ẋ = px + θ̇y − ṙ

ẏ = py − θ̇(r + x)

ṗx = − µ

r2
+

2µx

r3
+ pyθ̇

ṗy = −µy

r3
− θ̇px

(12.2)

differentiating ẋ = px + θ̇y − ṙ gives

ẍ = ṗx + θ̈y + θ̇ẏ − r̈ (12.3)

substituting ṗx = − µ
r2 + 2µx

r3 + pyθ̇ into equation (12.3) gives

ẍ = − µ

r2
+

2µx

r3
+ pyθ̇ + θ̈y + θ̇ẏ − r̈ (12.4)

then from the equations for the canonical momenta substituting py = rθ̇ +

xθ̇ + ẏ into equation (12.4) gives

ẍ = − µ

r2
+

2µx

r3
+ (rθ̇ + xθ̇ + ẏ)θ̇ + θ̈y + θ̇ẏ − r̈ (12.5)

Simplifying and rearranging (12.5) yields:

ẍ− 2θ̇ẏ − θ̈y − θ̇2x− 2µx

r3
+ r̈ +

µ

r2
− rθ̇2 = 0 (12.6)

The 2nd order equation of the radius of an ideal Keplerian orbit is

r̈ +
µ

r2
− rθ̇2 = 0 (12.7)
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Thus, equation (12.6) becomes

ẍ− 2θ̇ẏ − θ̈y − θ̇2x− 2µx

r3
= 0 (12.8)

this is the form of the equation in (12.1). The second equation in (12.1) in y

is derived in the same manner. Differentiating

ẏ = py − θ̇(r + x) (12.9)

gives

ÿ = ṗy − θ̈r − θ̈x− θ̇ṙ − θ̇ẋ (12.10)

then substituting px = ṙ + ẋ− θ̇y into

ṗy = −µy

r3
− θ̇px (12.11)

and substituting (12.11) into equation (12.10) gives

ÿ = −µy

r3
− θ̇(ṙ + ẋ− θ̇y)− θ̈r − θ̈x− θ̇ṙ − θ̇ẋ (12.12)

Rearranging and simplifying (12.12) yields:

ÿ + 2θ̇ẋ + θ̈x− θ̇2y +
µ

r3
y + θ̈r + 2θ̇ṙ = 0 (12.13)

The 2nd order differential equation in θ for an ideal Keplarian orbit is

θ̈r + 2θ̇ṙ = 0 (12.14)

therefore equation (12.13) equates to:

ÿ + 2θ̇ẋ + θ̈x− θ̇2y +
µ

r3
y = 0 (12.15)

which is the equation in y in (12.1). Therefore the two sets of equations

(12.1) and (12.2) are equivalent.
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Appendix B - The study model

The study model below are the Hamiltonian canonical equations of rela-

tive motion calculated using the equations (3.11) and include eccentricity,

nonlinear gravitational terms and H(1) the J2 perturbation. These equations

were computed using Mathematica:

ẋ = px + θ̇y − ṙ

ẏ = py − θ̇(r + x)

ż = pz

ṗx = pyθ̇ − µ(r + x)

((r + x)2 + y2 + z2)1/2
− 3J2R

2
eµ(r + x)((r + x)2 + y2 − 4z2)

2((r + x)2 + y2 + z2)7/2

ṗy = −pxθ̇ − µy

((r + x)2 + y2 + z2)1/2
− 3J2R

2
eyµ(r + x)((r + x)2 + y2 − 4z2)

2((r + x)2 + y2 + z2)7/2

ṗz = − µz

((r + x)2 + y2 + z2)1/2
− 9J2R

2
ezµ((r + x)2 + y2 − 2z2)

2((r + x)2 + y2 + z2)7/2

(12.16)
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Appendix C - The full model

The full model of relative motion is calculated using the equations (3.11) and

include eccentricity, nonlinear gravitational terms and H(1) the J2 perturba-

tion, air drag and actuation parameters. These equations were computed

using Mathematica:

ẋ = px + θ̇y − ṙ

ẏ = py − θ̇(r + x)

ż = pz

ṗx = pyθ̇ − µ(r + x)

((r + x)2 + y2 + z2)1/2
− 3J2R

2
eµ(r + x)((r + x)2 + y2 − 4z2)

2((r + x)2 + y2 + z2)7/2

+ux

ṗy = −pxθ̇ − µy

((r + x)2 + y2 + z2)1/2
− 3J2R

2
eyµ(r + x)((r + x)2 + y2 − 4z2)

2((r + x)2 + y2 + z2)7/2

+uy

ṗz = − µz

((r + x)2 + y2 + z2)1/2
− 9J2R

2
ezµ((r + x)2 + y2 − 2z2)

2((r + x)2 + y2 + z2)7/2

+uz

(12.17)

where [ux, uy, uz] are the actuation signals.
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