

Top view; Pins facing upward; All dimensions are in mm ; Header pitch of $\mathrm{J} 1 \& \mathrm{~J} 2$ is 1.27 mm and for J 3 is 2.54 mm . Drawing not to scale.

Motor - sensor configurations					
	PMSM	BLDC	DC BRUSH	$\begin{array}{\|l\|} \hline \text { STEP } \\ \text { (2-ph) } \end{array}$	$\begin{aligned} & \text { STEP } \\ & (3-\mathrm{ph}) \end{aligned}$
Incr. Encoder	(3)		(5)	(3)	
Incr. Encoder + Dig. Hall	(5)	(5)			
Linear Halls	(5)				
Digital Hall control only	(3)				
Analog Sin/Cos encoder	(5)	(5)	(5)	(5)	
SSI I BiSS-C/ EnDAT/ TAMAGAWA/ Panasonic	(5)	(5)	(5)	(5)	
Tacho			(5)		
Open-loop (no sensor)				(5)	(5)

- Features

- Motion controller and drive in a single compact unit based on MotionChip ${ }^{\text {TM }}$ technology
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- Advanced motion control capabilities (PVT, S-curve, electronic cam)
- Motor supply: 11-50V; Logic SELV/ PELV supply: 9-36V; STO SELV/ PELV supply: 18-40V
- Output current: 15A ${ }^{1}$ RMS cont. (BLDC mode); 28 APEAKRMS up to 100 kHz PWM
- Operating ambient temperature: $0-40^{\circ} \mathrm{C}$ (over $40^{\circ} \mathrm{C}$ with derating)
- NTC/PTC analogue Motor Temperature sensor input
- Communication interfaces: - USB
- RS232
- dual 100Mbps EtherCAT® ports
- Feedback Devices (dual-loop support)
$1^{\text {st }}$ feedback devices supported:
- Incremental encoder interface (single ended or differential)
- Analogue sin/cos encoder interface (differential $1 \mathrm{~V}_{\mathrm{pp}}$)
- Digital Hall sensor interface (single-ended and open collector)
- Linear Hall sensors interface
- pulse \& direction interface (single ended or differential) for external (master) digital reference
$2^{\text {nd }}$ feedback devices supported:
- Incremental encoder interface (differential)
- pulse \& direction interface (differential) for external (master) digital reference
- BISS / SSI / EnDAT / TAMAGAWA / Panasonic encoder interface
- STO: 2 safe torque-off inputs, safety integrity level (SIL3/Cat3/PLe) acc. to EN61800-5-1; -2/ EN61508-3; -4/ EN ISO 13849-1.
- 6 digital inputs, 12-36V, PNP/NPN programmable: 2 for limit switches, 4 general-purpose
- 6 digital outputs: $5-36 \mathrm{~V}$, programmable polarity: 0.3 A sourcing/NPN or 0.2 A sinking/PNP: (Ready, Error and 4 general-purpose)
- 2 analogue inputs: 12 -bit, $0-5 \mathrm{~V}$: Reference, Feedback or general purpose
- Commissioning (set-up) possible through RS232, FoE (file-overEtherCAT®®), EoE (Ethernet-over-EtherCAT®)
- EtherCAT® connection between multiple MZ drives: direct 1:1 without any series components
- EtherCAT® connection to standard RJ45: requires external magnetics (may be integrated into RJ45)
- $255 \mathrm{~h} / \mathrm{w}$ addresses selectable by h / w pins configuration
- $16 \mathrm{k} \times 16$ SRAM memory for data acquisition
- $24 \mathrm{k} \times 16 \mathrm{E}^{2}$ ROM to store setup data, TML motion programs, cam tables and other user data
${ }^{1}$ Nominal current can be increased if external cooling is ensured over cooling area

Name ALN	First edition May 4, 2021	Document template: P099.TQT.564.0001	Last edition May 20, 2021	Visa :
	HNOS	Title of document iPOS4815 MZ-CAT PRODUCT DATA SHEET	$\begin{aligned} & \text { No document } \\ & \text { P022.016.E122.DSH.01B } \\ & \quad \text { Page: } 1 \text { of } 6 \end{aligned}$	

Mandatory: all drives supplied from the same power supply same GND)

Mating Connectors			
When J3 is plugged into a connector and maximum current should not exceed 12.7A Sine amplitude			
Ref	Producer	Part No.	Description
J1, J2	Harwin	M52-5012045	1×20 contacts, socket 1.27 mm -pitch; 4 pcs needed for one drive
	Samtec	SMS-140-01-L-S	1×40 contacts, socket 1.27 mm -pitch; 2 pcs needed for one drive
		SMS-140-01-G-S	
J3	Mill-Max	$\begin{aligned} & \text { 801-47-012-10- } \\ & 001000 \end{aligned}$	1x12 contacts, High-current socket 2.54 mm -pitch accepting 0.635 mm square pin; 1 pcs is needed for one drive; the current should not exceed 12.7A
When J 3 is soldered directly onto a motherboard and the maximum current can exceed 13A Sine amplitude			
Ref	Producer	Part No.	Description
J1, J2	Harwin	M52-5012045	1x20 contacts, socket 1.27 mm -pitch; 4 pcs needed for one drive
J3	The pins are directly soldered onto a motherboard for increased current capability		

Alternative: Direct connection

	Pin	Name	Type	Description
	1,2	GND		Return ground for motor. Internally connected to all GND signals except STO GND.
	3,4	Cr/B-	0	Chopping resistor / Phase B- for 2-ph steppers
	5,6	C/B+	0	Phase C for 3-ph motors, B+ for 2-ph steppers
$\stackrel{\text { M }}{ }$	7,8	B/A-	0	Phase B for 3-ph motors, A- for 2-ph steppers, Motor- for DC brush motors
	9,10	A/A+	0	Phase A for 3-ph motors, A+ for 2-ph steppers, Motor + for DC brush motors
	11,12	+ $\mathrm{V}_{\text {мот }}$	1	Positive terminal of the motor supply: 11 to 48 V D.

Name ALN	First edition May 4, 2021	Document template: P099.TQT.564.0001	Last edition May 20, 2021	
	Tistle of document	N° document PCHNOSOFT	PROS4815 MZ-CAT	Page: 2 of 6

Pin	Name	Type	Description					
$\mathbf{1}$	Temp Mot	I	NTC/PTC 3.3V input. Used to read an analog temperature value					
$\mathbf{2}$	232TX	O	RS-232 Data Transmission					
$\mathbf{3}$	232RX	I	RS-232 Data Reception		$\mathbf{4}$	USB Data-	I/O	USB Data negative
:---:	:---:	:---:	:---					
$\mathbf{5}$	USB Data+	I/O	USB Data positive					
$\mathbf{6}$	USB V+	I	USB +5V input					
$\mathbf{7}$	P1 LED	O	ECAT OUT port LED					
$\mathbf{8}$	P0 LED	O	ECAT IN port LED					
$\mathbf{9}$	Axis ID Bit7	I	8 bit H/W Axis ID register.					
$\mathbf{1 0}$	Axis ID Bit6	I	Connect pin to GND to set bit to 1.					
$\mathbf{1 1}$	Axis ID Bit5	I	Sets hardware Axis ID that is found in the					
$\mathbf{1 2}$	Axis ID Bit4	I	ECAT register configured station alias					
$\mathbf{1 3}$	Axis ID Bit3	I	Pin 16 is Bit 0... Pin 9 is Bit 8 of the Axis value. $\mathbf{1 4}$ Axis ID Bit2					
$\mathbf{1 5}$	I Possible values: from 1 to 255 (all pins OFF);							
$\mathbf{1 5}$	Axis ID Bit1	I	When Axis ID is 255, the EtherCAT register					
called "configured station alias" will be 0.								

Pin	Name	Type	Description
1	LH1	I	Linear Hall 1 input
2	LH2	1	Linear Hall 2 input
3	LH3	1	Linear Hall 3 input
4	FDBK	1	Analogue input, 12-bit, 0-5V. Reads an analogue feedback (tacho), or general purpose
5	REF	I	Analogue input, 12-bit, 0-5V. Reads analog reference, or general-purpose analogue input
6	Hall 3	1	Digital input Hall 3 sensor
7	Hall 2	1	Digital input Hall 2 sensor
8	Hall 1	1	Digital input Hall 1 sensor
9	GND	-	Return ground. Internally connected to all GND signals except STO GND.
10	IN5	1	12-36V general-purpose digital PNP/NPN input
11	IN4	I	$12-36 \mathrm{~V}$ general-purpose digital PNP/NPN input
12	IN1	1	12-36V general-purpose digital PNP/NPN input
13	INO	1	12-36V general-purpose digital PNP/NPN input
14	IN2/LSP	1	12-36V digital PNP/NPN input. Positive limit switch input
15	IN3/LSN	1	12-36V digital PNP/NPN input. Negative limit switch input
16	OUT3	0	$5-36 \mathrm{~V}$ general-purpose digital output, $0.2 \mathrm{~A} \mathrm{PNP/}$ 0.3A NPN, software selectable
17	OUT2	0	$5-36 \mathrm{~V}$ general-purpose digital output, $0.2 \mathrm{~A} \mathrm{PNP/}$ 0.3A NPN, software selectable
18	OUT5	0	$5-36 \mathrm{~V}$ general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
19	OUT4	0	$5-36 \mathrm{~V}$ general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
20	OUT1	0	$5-36 \mathrm{~V}$ general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
21	OUTO	0	5-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
22	Z1+	1	Incr. encoder1 Z single-ended, or $\mathrm{Z}+$ diff. input,
23	Z1-	1	Incr. encoder1 Z- diff. input
24	B1+/Cos+	1	Incr. encoder1 B single-ended, or B+ diff. input, or analogue encoder Cos+ diff. input
25	B1-/Cos-	1	Incr. encoder1 B- diff. input, or analogue encoder Cos- diff. input
26	A1+/Sin+	1	Incr. encoder1 A single-ended, or A+ diff. input, or analogue encoder Sin+ diff. input
27	A1-/Sin-	I	Incr. encoder1 A- diff. input, or analogue encoder Sindiff. input
28	Z2+	1	Incr. encoder2 Z+ diff. input; has 150Ω resistor between pins 28 and 29
29	Z2-	1	Incr. encoder2 Z- diff. input; has 150Ω resistor between pins 28 and 29
30	$\begin{gathered} \text { B2-/Dir- } \\ \text { /CLK-/MA- } \end{gathered}$	I/O	Incr. encoder2 B- diff. input, or Dir--, or Clock- for SSI, or Master- for BiSS; has 150Ω resistor between pins 30 and 31
31	$\begin{aligned} & \text { B2+/Dir+/ } \\ & \text { CLK+/MA+ } \end{aligned}$	I/O	Incr. encoder2 B+ diff. input, or Dir+-, or Clock+ for SSI, or Master+ for BiSS; has 150Ω resistor between pins 30 and 31
32	A2+/Pulse+ / Data+/SL+		Incr. encoder2 A+ diff. input, or Pulse+, or Data+ for SSI, or Slave+ for BiSS; has 150Ω resistor between pins 32 and 33
33	A2- /Pulse-/ Data-/SL-	1	Incr. encoder2 A- diff. input, or Pulse-, or Data- for SSI, or Slave- for BiSS; has 150Ω resistor between pins 32 and 33
34	Reserved	-	Reserved. Do not use
35	Reserved	-	Reserved. Do not use
36	Reserved	-	Reserved. Do not use
37	Reserved	-	Reserved. Do not use
38	+5V ${ }_{\text {out }}$	0	5 V output supply for I/O usage
39	-V $\mathrm{V}_{\text {Log }}$	1	Negative terminal of the logic supply input: 9 to $36 \mathrm{~V}_{\mathrm{DC}}$ from SELV/ PELV type power supply.
40	+V ${ }_{\text {Log }}$	1	Positive terminal of the logic supply input: 9 to $36 V_{D C}$ from SELV/ PELV type power supply.

Name First edition ALN May 4, 2021	Document template: P099.TQT.564.0001	Last edition May 20, 2021	Visa
© TECHNOSOFT	Title of document iPOS4815 MZ-CAT PRODUCT DATA SHEET	$\begin{array}{\|l\|} \hline \mathrm{N}^{\circ} \text { document } \\ \text { P022.016.E122.DSH.01B } \end{array}$	Page: 3 of 6

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified)

- $\quad \mathrm{VLOG}=24 \mathrm{VDC} ; \mathrm{VMOT}=48 \mathrm{VDC}$
- Supplies start-up / shutdown sequence: -any-
- Load current (sinusoidal amplitude / cont. BLDC, DC, stepper) $=15$ A RMS

Operating Conditions		Min.	Typ.	Max.	Units
Ambient temperature		0		40^{1}	${ }^{\circ} \mathrm{C}$
Ambient humidity Non-condensing		0		90	\%Rh
Altitude / pressure ${ }^{2}$	Altitude (vs. sea level)	-0.1	$0 \div 2.5$	${ }^{2}$	Km
	Ambient Pressure	0^{2}	$0.75 \div 1$	10.0	atm
Storage Conditions		Min.	Typ.	Max.	Units
Ambient temperature		-40		100	${ }^{\circ} \mathrm{C}$
Ambient humidity Non-condensing		0		100	\%Rh
Ambient Pressure		0		10.0	atm
ESD capability (Human body model)	Not powered; applies to any accessible part			± 0.5	kV
	Original packaging			± 15	kV
Mechanical Mounting		Min.	Typ.	Max.	Units
Airflow		natural convection ${ }^{3}$, closed box			
Spacing required for vertical mounting	Between adjacent drives	30			mm
	Between drives and nearby walls	30			mm
	Between drives and roof-top	20			mm
Spacing required for horizontal mounting	Between adjacent drives	4			mm
	$\begin{array}{l}\text { Between drives and nearby } \\ \text { walls }\end{array}$ Spare	5			mm
	Space needed for drive removal	10			mm
	Between drives and roof-top	15			mm
Insertion force	Using recommended mating connectors		TBD	TBD	N
Extraction force		TBD	TBD		N
Environmental Characteristics		Min.	Typ.	Max.	Units
Size (Length x Width x Height)	Global size	$64 \times 43.8 \times 15.7$			mm
		$\sim 2.52 \times 1.72 \times 0.62$			inch
Weight		36.3			g
Cleaning agents	Dry cleaning is	Only Water- or Alcohol- based			
Protection degree	According to IEC60529, UL508	IP20			-
Logic Supply Input (+ $\mathrm{V}_{\text {LOG }}$)		Min.	Typ.	Max.	Units
Supply voltage	Nominal values	9		36	V_{DC}
	Absolute maximum values, drive operating but outside guaranteed parameters	8		40	VDC
	Absolute maximum values, continuous	-0.6		42	$\mathrm{V}_{\text {DC }}$
	Absolute maximum values, surge (duration $\leq 10 \mathrm{~ms}$) ${ }^{\dagger}$	-1		+45	V
Supply current	$+\mathrm{V}_{\text {LOG }}=12 \mathrm{~V}$		TBD		mA
	$+\mathrm{V}_{\text {L }}$ OG $=24 \mathrm{~V}$		TBD		
	$+\mathrm{V}_{\text {LOG }}=40 \mathrm{~V}$		TBD		
Motor Supply Input ($+\mathrm{V}_{\text {mot }}$)		Min.	Typ.	Max.	Units
Supply voltage	Nominal values	11		50	$V_{D C}$
	Absolute maximum values, drive operating but outside guaranteed parameters	9		52	V Vc
	Absolute maximum values, continuous	-0.6		54	V_{DC}
	Absolute maximum values, surge (duration $\leq 10 \mathrm{~ms})^{\dagger}$	-1		57	V
Supply current	Idle		1	5	mA
	Operating	-40	± 10	+40	A
	Absolute maximum value, short-circuit condition (duration $\leq 10 \mathrm{~ms})^{\dagger}$			43	A
Supply Output (+5V)		Min.	Typ.	Max.	Units
Output voltage	Current sourced $=250 \mathrm{~mA}$	4.8	5	5.2	V
Output current			TBD		mA
Short-circuit		NOT protected			
Over-voltage		NOT protected			
ESD protection	Human body model	± 1			kV

${ }^{1}$ Operating temperature at higher temperatures is possible with reduced current and power ratings ${ }^{2}$ iPOS4815 can be operated in vacuum (no altitude restriction), but at altitudes over $2,500 \mathrm{~m}$, current and power rating are reduced due to thermal dissipation efficiency.

${ }^{3}$ In case of forced cooling (conduction or ventilation) the spacing requirements may drop substantially down to zero as long as the ambient temperature is kept below the maximum operating limit
${ }^{4}$ @20kHz Fpwm

Name	First edition	Document template: P099.TQT.564.000

ALN

| Last edition |
| :--- | :--- |
| May 20, 2021 |

May 20, 2021

Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5, IN6) ${ }^{1}$		Min.	Typ.	Max.	Units
Mode compliance		PNP			
Default state	Input floating (wiring disconnected)	Logic LOW			
Input voltage	Logic "LOW"	-10	0	2.2	V
	Logic "HIGH"	6.3	24	36	
	Hysteresis	1.2	2.4	2.8	
	Floating voltage (not connected)		0		
	Absolute maximum, continuous	-10		+39	
	Absolute maximum, surge ${\text { (duration } \leq 1 \mathrm{~s})^{\dagger}}^{\dagger}$	-20		+40	
Input current	Logic "LOW"; pulled to GND		0		mA
	Logic "HIGH"		8	10	
Mode compliance		NPN			
Default state	Input floating (wiring disconnected)	Logic HIGH			
Input voltage	Logic "LOW"		0	2.2	V
	Logic "HIGH"	6.3	24	36	
	Hysteresis	1.2	2.4	2.8	
	Floating voltage (not connected)		15		
	Absolute maximum, continuous	-10		+39	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$	-20		+40	
Input current	Logic "LOW"; Pulled to GND		8	10	mA
	Logic "HIGH"; Pulled to +24V	0	0	0	
Input frequency		0		10	kHz
Minimum pulse		6			$\mu \mathrm{s}$
ESD protection	Human body model	± 5			kV
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Encoder1 Inputs } \\ \text { (A1/A1+, A1-, B1/B1+, B1-, Z1/Z1+, Z1-) } \end{array} \\ \hline \end{array}$		Min.	Typ.	Max.	Units
Single-ended mode compliance	Leave negative inputs disconnected	TTL / CMOS / Open-collector			
Input voltage, single-ended mode $\mathrm{A} / \mathrm{A}+, \mathrm{B} / \mathrm{B}+$	Logic "LOW"			1.6	V
	Logic "HIGH"	1.8			
	Floating voltage (not connected)		3.3		
Input voltage, single-ended mode Z/Z+	Logic "LOW"			1.2	V
	Logic "HIGH"	1.4			
	Floating voltage (not connected)		4.7		
Input current, single-ended mode $\mathrm{A} / \mathrm{A}+, \mathrm{B} / \mathrm{B}+$, Z/Z+	Logic "LOW"; Pull to GND		5.5	6	mA
	Logic "HIGH"; Internal 2.2K Ω pull-up to +5	0	0	0	
Differential mode compliance	For full RS422 compliance, see ${ }^{2}$	TIA/EIA-422-A			
Input voltage, differential mode	Hysteresis	± 0.06	± 0.1	± 0.2	V
	$\begin{array}{\|l} \hline \begin{array}{l} \text { Common-mode range } \\ \text { (A+ to GND, etc.) } \end{array} \\ \hline \end{array}$	-7		+7	
Input impedance, differential	A1+ to A1-, B1+ to B1-		1		k Ω
	Z1+ to Z1-		1		
Input frequency	Single-ended mode, Opencollector / NPN	0		5	MHz
	Differential mode, or Singleended driven by push-pull (TTL / CMOS)	0		10	MHz
Minimum pulse width	Single-ended mode, Opencollector / NPN	1			$\mu \mathrm{s}$
	Differential mode, or Singleended driven by push-pull (TTL / CMOS)	50			ns
Input voltage, any pin to GND	Absolute maximum values, continuous	-7		+7	V
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$	-11		+14	
ESD protection	Human body model	± 1			kV

Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/Ready, OUT4, OUT5) ${ }^{1}$		Min.	Typ.	Max.	Units
Mode compliance		PNP 24V			
Default state	Not supplied (+VLOG floating or to GND)	High-Z (floating)			
	Normal operation	Logic "High"			
Output voltage	$\begin{aligned} & \text { Logic "HIGH"; output current = } \\ & \text { 0.2A } \end{aligned}$		V ${ }_{\text {Log }}$-0. 2	Vlog-0.8	V
	Logic "LOW"; output current = 0, no load	open-collector			
	Logic "HIGH", external load to GND		0		
	Absolute maximum, continuous	-0.3		$\mathrm{V}_{\text {LOG }}+0.3$	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$	-0.5		$\mathrm{V}_{\text {LoG }}+0.5$	
Output current	Logic "HIGH", source current, continuous			0.2	A
	Logic "HIGH", source current, pulse $\leq 5 \mathrm{~s}$			0.4	A
	Logic "LOW", means High-Z				mA
Minimum pulse width		2			$\mu \mathrm{s}$
ESD protection	Human body model	± 15			kV

| Mode
 compliance | | NPN 24V | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Default
 state | Not supplied (+VLOG floating or
 to GND) | High-Z (floating) | | |$|$

| Encoder2 Inputs
 (A2+/Data+, A2-/Data-, B2+/Clk+, B2-/Clk-,
 Z2+, Z2-) | Min. | Typ. | Max. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Differential
 mode
 compliance | | TIA/EIA-422-A | | |$|$

${ }^{1}$ The digital inputs and outputs are software selectable as PNP or NPN
${ }^{2}$ For full RS-422 compliance, 120Ω termination resistors must be connected across the differential pairs, as close as possible to the drive input pins.

Name ALN	First edition May 4, 2021	Document template: P099.TQT.564.0001
	Title of document	
TECHNOSOFT	iPOS4815 MZ-CAT	
	PRODUCT DATA SHEET	

Last edition
May 20, 202
N° document
P022.016.E122.DSH.01B

Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-)		Min.	Typ.	Max.	Units
Input voltage, differential	Sin+ to Sin-, Cos+ to Cos-		1	1.25	$V_{\text {PP }}$
Input voltage, any pin to GND	Operational range	-1	2.5	4	V
	Absolute maximum values, continuous	-7		+7	
	Absolute maximum, surge ${\text { (duration } \leq 1 \mathrm{~s})^{\dagger}}^{\dagger}$	-11		+14	
Input impedance	Differential, Sin+ to Sin-, Cos+ to Cos- ${ }^{1}$	4.2	4.7		$\mathrm{k} \Omega$
	Common-mode, to GND		2.2		k Ω
Resolution with interpolation	Software selectable, for one sine/cosine period	2		10	bits
Frequency	Sin-Cos interpolation	0		450	kHz
	Quadrature, no interpolation	0		10	MHz
ESD protection	Human body model	± 1			kV
Analog 0...5V Inputs (REF, FDBK)		Min.	Typ.	Max.	Units
Input voltage	Operational range	0		5	V
	Absolute maximum values, continuous	-12		+18	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$			± 36	
Input impedance	To GND		28		k Ω
Resolution		12			bits
Integral linearity				± 2	bits
Offset error			± 2	± 10	bits
Gain error			$\pm 1 \%$	$\pm 3 \%$	\% FS ${ }^{2}$
Bandwidth (-3Db)	Software selectable	0		1	kHz
ESD protection	Human body model	± 5			kV
RS-232		Min.	Typ.	Max.	Units
Compliance		TIA/EIA-232-C			
Bit rate	Software selectable	9600		115200	Baud
Short-circuit	232TX short to GND	Guaranteed			
ESD protection	Human body model	± 2			kV
Safe torque OFF(STO1+, STO1-, STO2+, STO2+)		Min.	Typ.	Max.	Units
Safety function	According to EN61800-5-2	STO (Safe Torque OFF)			
EN 61800-5-1/ -2 and EN 61508-5-3/-4 Classification	Safety Integrity Level	safety integrity level 3 (SIL3)			
	PFHD (probability of dangerous failures per hour)	$8^{*} 10^{-10}$		(0.8 FI	
EN13849-1 Classification	Performance Level	Cat3/PLe			
	MTTFM (meantime to dangerous failure)	377			years
Mode compliance		PNP			
Default state	Input floating (wiring disconnected)	Logic LOW			
Input voltage	Logic "LOW"	-20		5.6	V
	Logic "HIGH"	18		36	
	Absolute maximum, continuous	-20		+40	
Input current	Logic "LOW"; pulled to GND		0		mA
	Logic "HIGH", pulled to +Vlog		5	13	
Repetitive test pulses (high-low-high)	Ignored high-low-high			5	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~Hz} \end{aligned}$
				20	
Fault reaction time	From internal fault detection to register DER bit $14=1$ and OUT2/Error high-to-low			30	ms
PWM operation delay	From external STO low-high transition to PWM operation enabled			30	ms
ESD protection	Human body model	± 2			kV

When the connections between drives are done directly, without magnetics
(nonstandard, not conform to Ethernet IEEE802.3 100BASE-TX), it is imperative that the ground voltage difference between drives is kept to a minimum. The installation must provide a supplementary GND link between the drives. This link must have low inductance. Low inductance is best achieved by using large metal parts, such as a
metallic chassis / baseplate, or using copper conductive tape.

LED signals		Min.	Typ.	Max.	Units
LED connection		Common cathode to GND			
		Direct, no series resistor			
LED current			0.7	1	mA
Conformity		Min.	Typ.	Max.	Units
EU Declaration	$\begin{aligned} & \hline \text { 2014/30/EU (EMC), } \\ & \text { 2014/35/EU (LVD), } \\ & \text { 2011/65/EU (RoHS), } \\ & \text { 1907/2006/EC (REACH), } \\ & \text { 93/68/EEC (CE Marking Directive), } \\ & \text { EC 428/2009 (non dual-use item, o } \end{aligned}$	ut fre	ncy li	$\mathrm{d} \text { to } 5$	

\dagger Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

For many applications, a 120Ω termination resistor should be connected across SIN+ to SIN-, and across COS+ to COS-. Please consult the feedback device datasheet for confirmation

Name First edition ALN May 4, 2021	Document template: P099.TQT.564.0001	Last edition May 20, 2021	Visa :
(S) TECHNOSOFT	Title of document iPOS4815 MZ-CAT PRODUCT DATA SHEET	$\begin{aligned} & \hline \mathrm{N}^{\circ} \text { document } \\ & \text { P022.016.E122.DSH.01B } \end{aligned}$	Page: 6 of 6

