iPOS4815 MZ-CAT DATASHEET

P/N: P022.016.E122 -preliminary-

Top view; Pins facing upward; All dimensions are in mm; Header pitch of J1 & J2 is 1.27mm and for J3 is 2.54 mm. Drawing not to scale.

Motor – sensor configu	rations				
Motor Sensor	PMSM	BLDC	DC BRUSH	STEP (2-ph)	STEP (3-ph)
Incr. Encoder	Ð		5	3	
Incr. Encoder + Dig. Hall	Θ	7			
Linear Halls	3				
Digital Hall control only	3				
Analog Sin/Cos encoder	Ð	3	5	3	
SSI / BiSS-C/ EnDAT/ TAMAGAWA/ Panasonic	B	5	T	5	
Tacho			5		
Open-loop (no sensor)				5	3

Features

- Motion controller and drive in a single compact unit based on MotionChip [™] technology
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- Advanced motion control capabilities (PVT, S-curve, electronic cam)
 Motor supply: 11-50V; Logic SELV/ PELV supply: 9-36V; STO SELV/
- PELV supply: 18-40V
 Output current: 15A ¹ RMS cont. (BLDC mode); 28 A_{PEAK} RMS, up to 100kHz PWM
- Operating ambient temperature: 0-40°C (over 40°C with derating)
- NTC/PTC analogue Motor Temperature sensor input
- Communication interfaces:
 USB
 - RS232
 - dual 100Mbps EtherCAT_® ports

•	Feedback Devices (dual-loop support)
	1 st feedback devices supported:
	 Incremental encoder interface (single ended or differential)
	 Analogue sin/cos encoder interface (differential 1V_{pp})
	 Digital Hall sensor interface (single-ended and open collector)
	 Linear Hall sensors interface
	 pulse & direction interface (single ended or differential) for external (master) digital reference
	2 nd feedback devices supported:
	 Incremental encoder interface (differential)
	 pulse & direction interface (differential) for external (master) digital reference
	 BISS / SSI / EnDAT / TAMAGAWA / Panasonic encoder interface
•	STO: 2 safe torque-off inputs, safety integrity level (SIL3/Cat3/PLe) acc. to EN61800-5-1; -2/ EN61508-3; -4/ EN ISO 13849-1.
•	6 digital inputs, 12-36V, PNP/NPN programmable: 2 for limit switches, 4 general-purpose
•	6 digital outputs: 5-36V, programmable polarity: 0.3A sourcing/NPN or 0.2 A sinking/PNP: (Ready, Error and 4 general-purpose)
•	2 analogue inputs: 12-bit, 0-5V: Reference, Feedback or general purpose
•	Commissioning (set-up) possible through RS232, FoE (file-over- EtherCAT $_{\otimes}$), EoE (Ethernet-over-EtherCAT $_{\otimes}$)
•	EtherCAT⊛ connection between multiple MZ drives: direct 1:1 without any series components
•	EtherCAT⊚ connection to standard RJ45: requires external magnetics (may be integrated into RJ45)
•	255 h/w addresses selectable by h/w pins configuration
•	16k x 16 SRAM memory for data acquisition
•	24k x16 E ² ROM to store setup data, TML motion programs, cam tables and other user data

		PRODUCT DATA SHEET		Page: 1 of 6
TE (C)	CHNOSOFT	iPOS4815 MZ-CAT	P022.016.E122.DSH.01B	
•		Title of document	N° document	
ALN May 4, 2021			May 20, 2021	
Name	First edition	Document template: P099.TQT.564.0001	Last edition	Visa :
¹ Nominal current	can be increased if external cooling is ens	sured over cooling area		

iPOS4815 MZ-CAT DATASHEET P/N: P022.016.E122 -preliminary-

Mating Connectors						
Wher	n J3 is plug		ector and maximum current should /A Sine amplitude			
Ref	Producer	Part No.	Description			
	Harwin	M52-5012045	1x20 contacts, socket 1.27mm-pitch; 4 pcs needed for one drive			
J1, J2	Samtec	SMS-140-01-L-S	1x40 contacts, socket 1.27mm-pitch; 2 pcs			
Samtec		SMS-140-01-G-S	needed for one drive			
J3	Mill-Max	801-47-012-10- 001000	1x12 contacts, High-current socket 2.54mm-pitch accepting 0.635mm square pin; 1 pcs is needed for one drive; the current should not exceed 12.7A			
When J3 is soldered directly onto a motherboard and the maximum current can exceed 13A Sine amplitude						
Ref	Producer	Part No.	Description			
J1, J2	Harwin	M52-5012045	1x20 contacts, socket 1.27mm-pitch; 4 pcs needed for one drive			
J3	The pips are directly soldered onto a motherboard for increased current					

			A	Iternative: Direct connection
	Pin	Name	Туре	Description
	1,2	GND	-	Return ground for motor. Internally connected to all GND signals except STO GND.
	3,4	Cr/B-	0	Chopping resistor / Phase B- for 2-ph steppers
	5,6	C/B+	0	Phase C for 3-ph motors, B+ for 2-ph steppers
ы Ц	7,8	B/A-	0	Phase B for 3-ph motors, A- for 2-ph steppers, Motor- for DC brush motors
	9,10	A/A+	ο	Phase A for 3-ph motors, A+ for 2-ph steppers, Motor+ for DC brush motors
	11,12	+V _{MOT}	I	Positive terminal of the motor supply: 11 to $48V_{\text{DC.}}$

_		PRODUCT DATA SHEET		Page: 2 of 6	
TECHNOSOFT		iPOS4815 MZ-CAT	P022.016.E122.DSH.01B		
<u> </u>		Title of document	N° document		
ALN May 4, 2021			May 20, 2021		
Name	First edition	Document template: P099.TQT.564.0001	Last edition	Visa :	

iPOS4815 MZ-CAT DATASHEET

P/N: P022.016.E122 -

-preliminary	-	-p	re	li	m	in	а	ry	,
--------------	---	----	----	----	---	----	---	----	---

	Pin	Name	Туре	Description
	1	Temp Mot	Т	NTC/PTC 3.3V input. Used to read an analog temperature value
	2	232TX	0	RS-232 Data Transmission
	3	232RX	I	RS-232 Data Reception
	4	USB Data-	I/O	USB Data negative
	5	USB Data+	I/O	USB Data positive
	6	USB V+	I	USB +5V input
	7	P1 LED	0	ECAT OUT port LED
	8	P0 LED	0	ECAT IN port LED
	9	Axis ID Bit7	I	
	10	Axis ID Bit6	I	⁻ 8 bit H/W Axis ID register.
	11	Axis ID Bit5	1	-Connect pin to GND to set bit to 1. Sets hardware Axis ID that is found in the
	12	Axis ID Bit4	I	ECAT register configured station alias
	13	Axis ID Bit3	1	Pin 16 is Bit 0 Pin 9 is Bit 8 of the Axis value.
	14	Axis ID Bit2	1	Possible values: from 1 to 255 (all pins OFF);
	15	Axis ID Bit1	1	When Axis ID is 255, the EtherCAT register called <i>"configured station alias"</i> will be 0.
	16	Axis ID Bit0	1	-oanea configured station anas will be 0.
	17	RUN	0	Anode of Run LED (EtherCAT status machine).
	18	ERR	0	Anode of Error LED (EtherCAT status machine).
	19	Spi2 Clk	0	Reserved. Do not use
	20	Spi2 Out	0	Reserved. Do not use
	21	Spi2 In	1	Reserved. Do not use
	22	Spi2 CS	0	Reserved. Do not use
	23	Spi2 Irq	I	Reserved. Do not use
5	24	CT1_Rx	-	Connect to center tap of OUT port magnetics PHY Rx.
	25	RX1-	I/O	Receive/Transmit negative, OUT port. Connect to magnetics PHY RX1.
	26	RX1+	I/O	Receive/Transmit positive, OUT port. Connect to magnetics PHY RX1.
	27	TX1-	I/O	Transmit/Receive negative, OUT port. Connect to magnetics PHY TX1.
	28	TX1+	I/O	Transmit/Receive positive, OUT port. Connect to magnetics PHY TX1.
	29	CT1_Tx	-	Connect to center tap of OUT port magnetics PHY Tx.
	30	CT0_Rx	•	Connect to center tap of IN port magnetics PHY Rx.
	31	RX0-	I/O	Receive/Transmit negative, IN port. Connect to magnetics PHY RX0.
	32	RX0+	I/O	Receive/Transmit positive, IN port. Connect to magnetics PHY RX0.
	33	ТХ0-	I/O	Transmit/Receive negative, IN port. Connect to magnetics PHY TX0.
	34	TX0+	I/O	Transmit/Receive positive, IN port. Connect to magnetics PHY TX0. Connect to center tap of IN port magnetics PHY
	35	СТ0_Тх	-	Tx.
	36	GND	•	Return ground. Internally connected to all GND signals except STO GND. Safe Torque Off input
	37	STO2-	I	2, negative return (opto-isolated, 0V)
	38	STO2+	I	Safe Torque Off input Apply between both 2, positive input (opto-STO1+, STO2+ and isolated, 18+40V) STO1-, STO2- 24V DC
	39	STO1-	I	Safe Torque Off input 1, negative return (opto-isolated, 0V) PWM output operation
	40	STO1+	I	Safe Torque Off input 1, positive input (opto- isolated, 18+40V)

	Pin 1 2 3 4 5 6 7 8 9 10 11 12 13	Name LH1 LH2 LH3 FDBK REF Hall 3 Hall 2 Hall 1 GND IN5 IN4	Type I I I I I I I I I I I I I I I I I I	Description Linear Hall 1 input Linear Hall 2 input Linear Hall 3 input Analogue input, 12-bit, 0-5V. Reads an analogue feedback (tacho), or general purpose Analogue input, 12-bit, 0-5V. Reads analog reference, or general-purpose analogue input Digital input Hall 3 sensor Digital input Hall 2 sensor Digital input Hall 1 sensor
	2 3 4 5 6 7 8 9 10 11 11 12	LH2 LH3 FDBK REF Hall 3 Hall 2 Hall 1 GND IN5	 	Linear Hall 2 input Linear Hall 3 input Analogue input, 12-bit, 0-5V. Reads an analogue feedback (tacho), or general purpose Analogue input, 12-bit, 0-5V. Reads analog reference, or general-purpose analogue input Digital input Hall 3 sensor Digital input Hall 2 sensor
	3 4 5 6 7 8 9 10 11 12	LH3 FDBK REF Hall 3 Hall 2 Hall 1 GND IN5	 	Linear Hall 3 input Analogue input, 12-bit, 0-5V. Reads an analogue feedback (tacho), or general purpose Analogue input, 12-bit, 0-5V. Reads analog reference, or general-purpose analogue input Digital input Hall 3 sensor Digital input Hall 2 sensor
	4 5 6 7 8 9 10 11 12	FDBK REF Hall 3 Hall 2 Hall 1 GND IN5	 	Analogue input, 12-bit, 0-5V. Reads an analogue feedback (tacho), or general purpose Analogue input, 12-bit, 0-5V. Reads analog reference, or general-purpose analogue input Digital input Hall 3 sensor Digital input Hall 2 sensor
	5 6 7 8 9 10 11 12	REF Hall 3 Hall 2 Hall 1 GND IN5	 	feedback (tacho), or general purpose Analogue input, 12-bit, 0-5V. Reads analog reference, or general-purpose analogue input Digital input Hall 3 sensor Digital input Hall 2 sensor
	6 7 8 9 10 11 12	Hall 3 Hall 2 Hall 1 GND IN5	 	or general-purpose analogue input Digital input Hall 3 sensor Digital input Hall 2 sensor
	7 8 9 10 11 12	Hall 2 Hall 1 GND IN5	I	Digital input Hall 3 sensor Digital input Hall 2 sensor
	7 8 9 10 11 12	Hall 2 Hall 1 GND IN5	I	Digital input Hall 2 sensor
	8 9 10 11 12	Hall 1 GND IN5		
	9 10 11 12	GND IN5	-	Didital Input Hall 1 sensor
	10 11 12	IN5	-	5 1
	11 12	-		Return ground. Internally connected to all GND signals except STO GND.
	12	IN4	1	12-36V general-purpose digital PNP/NPN input
]			I	12-36V general-purpose digital PNP/NPN input
	13	IN1	1	12-36V general-purpose digital PNP/NPN input
		IN0	<u> </u>	12-36V general-purpose digital PNP/NPN input
	14	IN2/LSP	1	12-36V digital PNP/NPN input. Positive limit switch
1			•	input
	15	IN3/LSN	I	12-36V digital PNP/NPN input. Negative limit switch input
	16	OUT3	0	5-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
	17	OUT2	0	5-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
,	18	OUT5	0	5-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
	19	OUT4	0	5-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
72	20	OUT1	0	5-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
	21	OUT0	0	5-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
	22	Z1+	<u> </u>	Incr. encoder1 Z single-ended, or Z+ diff. input,
	23	Z1-	1	Incr. encoder1 Z- diff. input
,	24	B1+/Cos+	I	Incr. encoder1 B single-ended, or B+ diff. input, or analogue encoder Cos+ diff. input
	25	B1-/Cos-	I	Incr. encoder1 B- diff. input, or analogue encoder Cos- diff. input
1	26	A1+/Sin+	Т	Incr. encoder1 A single-ended, or A+ diff. input, or analogue encoder Sin+ diff. input
	27	A1- /Sin-	I	Incr. encoder1 A- diff. input, or analogue encoder Sin- diff. input
	28	Z2+	Т	Incr. encoder2 Z+ diff. input; has 150Ω resistor between pins 28 and 29
	29	Z2-	I	Incr. encoder2 Z- diff. input; has 150Ω resistor between pins 28 and 29
	30	B2-/Dir- /CLK-/MA-	I/O	Incr. encoder2 B- diff. input, or Dir, or Clock- for SSI, or Master- for BiSS; has 150Ω resistor between pins 30 and 31
	31	B2+/Dir+/ CLK+/MA+	I/O	Incr. encoder2 B+ diff. input, or Dir+-, or Clock+ for SSI, or Master+ for BiSS; has 150 Ω resistor between pins 30 and 31
	32	A2+/Pulse+ / Data+/SL+	I	Incr. encoder2 A+ diff. input, or Pulse+, or Data+ for SSI, or Slave+ for BiSS; has 150 Ω resistor between pins 32 and 33
	33	A2- /Pulse-/ Data-/SL-	I	Incr. encoder2 A- diff. input, or Pulse-, or Data- for SSI, or Slave- for BiSS; has 150Ω resistor between pins 32 and 33
	34	Reserved	-	Reserved. Do not use
	35	Reserved	-	Reserved. Do not use
	36	Reserved	-	Reserved. Do not use
	37	Reserved	-	Reserved. Do not use
	38	+5V _{OUT}	0	5V output supply for I/O usage
	39	-V _{LOG}	I	Negative terminal of the logic supply input: 9 to $36V_{\text{DC}}$ from SELV/ PELV type power supply.
	40	+V _{LOG}	I	Positive terminal of the logic supply input: 9 to $36V_{\text{DC}}$ from SELV/ PELV type power supply.

Name First edition		Document template: P099.TQT.564.0001	Last edition	Visa :
ALN May 4, 2021			May 20, 2021	
<u> </u>		Title of document	N° document	
TECHNOSOFT		DOGAGAE MZ CAT	P022.016.E122.DSH.01B	
		iPOS4815 MZ-CAT	P022.016.E122.D3H.01B	

iPOS4815 MZ-CAT DATASHEET P/N: P022.016.E122

-preliminary-

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified): arameters measured under the following conducts (..... VLOG = 24 VDC; VMOT = 48VDC Supplies start-up / shutdown sequence: -any-

Load current (sinusoidal amplitude / cont. BLDC, DC, stepper) = 15A RMS							
Operating Condit	ions	Min.	Тур.	Max.	Units		
Ambient temperatu		0		40 ¹	°C		
Ambient humidity	Non-condensing	0		90	%Rh		
Altitude / pressure	2 Altitude (vs. sea level)	-0.1	0 ÷ 2.5	2	Km		
	Ambient Pressure	0 ²	0.75 ÷ 1	10.0	atm		
Storage Condition	ns	Min.	Тур.	Max.	Units		
Ambient temperatu	ıre	-40		100	°C		
Ambient humidity	Non-condensing	0		100	%Rh		
Ambient Pressure		0		10.0	atm		
ESD capability	Not powered; applies to			±0.5	kV		
(Human body mod	el) any accessible part						
(Original packaging 			±15	kV		
Mechanical Moun	ting	Min.	Тур.	Max.	Units		
Airflow	Detuces edicent drives		al convecti	on °, close			
Spacing required	Between adjacent drives Between drives and nearby	30			mm		
for vertical	walls	30			mm		
mounting	Between drives and roof-top	20			mm		
	Between adjacent drives	4			mm		
Spacing required	Between drives and nearby	5			mm		
for horizontal	walls	<u> </u>	───	ļ			
mounting	Space needed for drive removal	10			mm		
	Between drives and roof-top	15	+		mm		
Insertion force	Using recommended mating		TBD	TBD	N		
Extraction force	connectors	TBD	TBD		N		
Environmental Cl	naracteristics	Min.	Тур.	Max.	Units		
Size (Length x	64	x 43.8 x 1	5.7	mm			
Width x Height)	~2 5	~2.52 x 1.72 x 0.62 inch					
		2.0		0.02			
Weight	Dry cleaning is		36.3		g		
Cleaning agents	recommended	Only	Water- or	Alcohol- b	based		
Protection degree	According to IEC60529,		IP20				
<u> </u>				-			
Logic Supply Inp		Min.	Тур.	Max.	Units		
	Nominal values	9		36	VDC		
	Absolute maximum values,	0		40	V		
	drive operating but outside guaranteed parameters	8		40	VDC		
Supply voltage	Absolute maximum values,			10			
	continuous	-0.6		42	VDC		
	Absolute maximum values,	-1		+45	V		
	surge (duration \leq 10ms) [†]	-1		+45	v		
	+V _{LOG} = 12V		TBD				
Supply current	$+V_{LOG} = 24V$	\square	TBD		mA		
	$+V_{LOG} = 40V$		TBD	L			
Motor Supply Inp		Min.	Тур.	Max.	Units		
	Nominal values	11	 	50	V _{DC}		
	Absolute maximum values,	0		FO	V		
	drive operating but outside guaranteed parameters	9		52	VDC		
Supply voltage	Absolute maximum values,		1				
	continuous	-0.6		54	V _{DC}		
	Absolute maximum values,	-1		E7	V		
	surge (duration \leq 10ms) [†]	-1		57	v		
-	Idle		1	5	mA		
	Operating	-40	±10	+40	Α		
Supply current	Absolute maximum value,						
	short-circuit condition			43	A		
	(duration ≤ 10ms) [†]	<u> </u>	L				
Supply Output (+		Min.	Тур.	Max.	Units		
Output voltage	Current sourced = 250mA	4.8	5	5.2	V		
Output current		<u> </u>	TBD		mA		
Short-circuit			NOT pr				
				atootad			
Over-voltage ESD protection	Human body model	±1	NOT pr	otected	kV		

Motor Outputs (A	A/A+, B/A-, C/B+, CF		Min.	Тур.	Max.	Units
	for DC brushed, st and BLDC motors based trapezoidal	with Hall-			21.21	
Nominal output current, continuous ⁴	for PMSM motors sinusoidal control amplitude value)	with FOC			21.21	А
	for PMSM motors sinusoidal control effective value)				15	
Motor output current, peak	maximum TBD s		-40		+40	Α
Short-circuit protection threshold			±43		±43	А
Short-circuit protection delay				TBD		μs
On-state voltage drop	Nominal output cu including typical m connector contact	ating		TBD		v
Voltage efficiency		10313101100		100		%
Off-state leakage current				±0.5	±1	mA
Motor inductance	Recommended value, for current ripple max. ±5% of full range; +V _{MOT} = 36 V	60 kHz 80 kHz				μН
(phase-to-phase)	Minimum value, limited by short- circuit protection; +V _{MOT} = 36 V	100 kHz 20 kHz 60 kHz 40 kHz 80 kHz 100 kHz				μН
Motor electrical time-constant (L/R)	Recommended value for ±5% current measurement error	20 kHz 40 kHz 60 kHz 80 kHz 100 kHz				μs
Current measurement	FS = Full Scale ac	•		TBD		%FS
	s (Hall1, Hall2, Hall3	3)	Min.	Тур.	Max.	Units
Mode compliance		,	TTL	/ CMOS /	Open-col	lector
Default state	Input floating (wiring disconnect	ed)		Logic	HIGH	
	Logic "LOW" Logic "HIGH"		2	0	0.8	
Input voltage	Floating voltage (not connected)		2	4.4		v
	Absolute maximum $(duration \le 1s)^{\dagger}$		-10		+15	
Input current	Logic "LOW"; Pull Logic "HIGH"; Inte			0	1.2 0	mA
		mai 4.7 132	0	0		
	pull-up to +5	111di 4.7132	0 2	0		μs
width .			-	0		μs kV
width ESD protection	pull-up to +5		2	Typ.	Max.	kV
width ESD protection Linear Hall Input	hull-up to +5 Human body mode s (LH1, LH2, LH3) Operational range	el	2 ±5		Max. 4.9	kV
width ESD protection Linear Hall Input Input voltage	pull-up to +5 Human body mode s (LH1, LH2, LH3) Operational range Absolute maximum continuous Absolute maximum,	el values,	2 ±5 Min.	Тур.		kV Units
width ESD protection Linear Hall Input Input voltage Input voltage	pull-up to +5 Human body mode s (LH1, LH2, LH3) Operational range Absolute maximum continuous Absolute maximum, (duration ≤ 1s) [†]	el values, surge	2 ±5 Min. 0 -7 -11	Тур.	4.9 +7 +14	kV Units V
width ESD protection Linear Hall Input: Input voltage Input voltage Input current Interpolation	pull-up to +5 Human body mode s (LH1, LH2, LH3) Operational range Absolute maximum continuous Absolute maximum, (duration ≤ 1s) [†] Input voltage 0+5 Depending on softw	el values, surge V	2 ±5 Min. 0 -7	Тур.	4.9 +7	kV Units V
Minimum pulse width ESD protection Linear Hall Input: Input voltage Input voltage Input current Interpolation Resolution Frequency	pull-up to +5 Human body mode s (LH1, LH2, LH3) Operational range Absolute maximum continuous Absolute maximum, (duration $\leq 1s$) [†] Input voltage 0+5	el values, surge V	2 ±5 Min. 0 -7 -11	Тур.	4.9 +7 +14 0.2	kV Units V V mA

¹Operating temperature at higher temperatures is possible with reduced current and power ratings ² iPOS4815 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency.

 3 In case of forced cooling (conduction or ventilation) the spacing requirements may drop substantially down to zero as long as the ambient temperature is kept below the maximum operating limit 4 @20kHz Eross

		PRODUCT DATA SHEET		Page: 4 of 6
TE CO	ECHNOSOFT	iPOS4815 MZ-CAT	P022.016.E122.DSH.01B	
		Title of document	N° document	
ALN	May 4, 2021		May 20, 2021	
Name	First edition	Document template: P099.TQT.564.0001	Last edition	Visa :
		@20KHZ F _{PWM}		

iPOS4815 MZ-CAT DATASHEET P/N: P022.016.E122

-preliminary-

	, IN3/LSN, IN4, IN5, IN6) ¹	Min.	Тур.	Max.	Units
Mode compliance	Input floating (wiring			PNP	
Default state	disconnected)		-	c LOW	
	Logic "LOW"	-10	0	2.2	
	Logic "HIGH"	6.3	24	36	
Input voltage	Hysteresis	1.2	2.4	2.8	
	Floating voltage (not connected)		0		v
	Absolute maximum,				v
	continuous	-10		+39	
	Absolute maximum, surge			10	
	$(duration \le 1s)^{\dagger}$	-20		+40	
Innut ourrant	Logic "LOW"; pulled to GND		0		mA
Input current	Logic "HIGH"		8	10	ШA
Mode compliance			Ν	IPN	
Default state	Input floating (wiring		Logi	c HIGH	
	disconnected)		-		
	Logic "LOW"		0	2.2	
	Logic "HIGH"	6.3	24	36	
	Hysteresis	1.2	2.4	2.8	
Input voltage	Floating voltage (not		15		v
1 5	connected)		15		
	Absolute maximum,	-10		+39	
	continuous	10		.00	
	Absolute maximum, surge	-20		+40	
	$(duration \le 1s)^{\dagger}$	20		. 10	
	Logic "LOW"; Pulled to GND		8	10	
Input current	• ·				mA
	Logic "HIGH"; Pulled to +24V	0	0	0	
Input frequency		0		10	kHz
Minimum pulse		6			μs
ESD protection	Human body model	6 ±5			µs kV
ESD protection Encoder1 Inputs			Тур.	Max.	
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E	81+, B1-, Z1/Z1+, Z1-)	±5 Min.			kV Units
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended		±5 Min.		Max. / Open-co	kV Units
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance	S1+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW"	±5 Min. TTL			kV Units
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage,	st+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH"	±5 Min.		/ Open-co	kV Units
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not	±5 Min. TTL		/ Open-co	kV Units
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended	B1+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected)	±5 Min. TTL	CMOS	/ Open-co	kV Units
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage,	S1+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW"	±5 Min. TTL / 1.8	CMOS	/ Open-co	kV Units Dilector
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended	It+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "HIGH"	±5 Min. TTL	3.3	/ Open-co	kV Units
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended	S1+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW"	±5 Min. TTL / 1.8	CMOS	/ Open-co	kV Units Dilector
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "HIGH"	±5 Min. TTL / 1.8	3.3	/ Open-co	kV Units Dilector
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "LOW"; Pull to GND	±5 Min. TTL, 1.8 1.4	3.3 4.7 5.5	/ Open-cc 1.6 1.2 6	kV Units Dillector V
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+,	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected)	±5 Min. TTL / 1.8	2.3 3.3 4.7	/ Open-co	kV Units Dilector
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5	±5 Min. TTL, 1.8 1.4	2 CMOS 3.3 4.7 5.5 0	/ Open-cc 1.6 1.2 6 0	kV Units Dillector V
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS422 compliance,	±5 Min. TTL, 1.8 1.4	2 CMOS 3.3 4.7 5.5 0	/ Open-cc 1.6 1.2 6	kV Units Dillector V
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5	±5 Min. TTL, 1.8 1.4	2 CMOS 3.3 4.7 5.5 0	/ Open-cc 1.6 1.2 6 0	kV Units Dillector V
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage,	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH" Floating voltage (not connected) Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range	±5 Min. TTL / 1.8 1.4 0 ±0.06	CMOS 3.3 4.7 5.5 0 TIA/E	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2	kV Units Dillector V
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage, differential mode	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "COW" Logic "LOW" Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.)	±5 Min. TTL / 1.8 1.4	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-ccc 1.6 1.2 6 0 IA-422-A	kV Units Dilector V V mA
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage, differential mode Input voltage, differential mode	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "LOW" Logic "LOW" Logic "LOW" Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1-	±5 Min. TTL / 1.8 1.4 0 ±0.06	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2	kV Units Dilector V V mA
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage, differential mode	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH", Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1-Z1+ to Z1-	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-co 1.6 1.2 6 0 IA-422-A ±0.2 +7	kV Units Ollector V W mA
ESD protection Encoder1 Inputs [A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage, differential mode Input voltage, differential mode Input voltage,	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open-	±5 Min. TTL / 1.8 1.4 0 ±0.06	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2	kV Units Sillector V W mA
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage, differential mode Input voltage, differential mode	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH", Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1-Z1+ to Z1-	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-co 1.6 1.2 6 0 IA-422-A ±0.2 +7	kV Units Dilector V V mA V kΩ
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage, differential mode Input voltage, differential mode	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH", Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open- collector / NPN Differential mode, or Single- ended driven by push-pull	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-co 1.6 1.2 6 0 IA-422-A ±0.2 +7	kV Units Dilector V V mA V kΩ
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage, differential mode Input voltage, differential mode	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Floating voltage (not connected) Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open-collector / NPN Differential mode, or Single-ended driven by push-pull (TTL / CMOS)	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2 +7 5	kV Units Dilector V V mA V kΩ MHz
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage, differential mode Input voltage, differential mode	S1+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "COW" Logic "LOW" Logic "COW" Logic "COW" Logic "COW", Pull to GND Logic "HIGH", Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open- collector / NPN Differential mode, or Single- ended driven by push-pull<((TTL / CMOS)	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2 +7 5	kV Units Dilector V V mA V kΩ MHz
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance Input voltage, differential mode Input voltage, differential mode	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "LOW" Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH", Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open- collector / NPN Differential mode, or Single- ended driven by push-pull (TTL / CMOS) Single-ended mode, Open- collector / NPN	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7 0 0	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2 +7 5	kV Units Ollector V V mA V kΩ MHz MHz
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, ZZ+ Differential mode compliance Input voltage, differential mode Input impedance, differential Input frequency Minimum pulse	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "COW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH", Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open- collector / NPN Differential mode, or Single- ended driven by push-pull (TTL / CMOS) Single-ental mode, or Single- ental mode, or Single- ental mode, or Single- ental mode, or Single- ental mode, or Single-	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7 0 0 0 1	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2 +7 5	kV Units Ollector V V mA V kΩ MHz MHz μs
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, ZZ+ Differential mode compliance Input voltage, differential mode Input impedance, differential Input frequency Minimum pulse	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open-collector / NPN Differential mode, or Single-ended mode, Open-collector / NPN Single-ended mode, Open-collector / NPN Differential mode, or Single-ended driven by push-pull (TTL / CMOS) Single-ended mode, or Single-ended driven by push-pull	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7 0 0	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2 +7 5	kV Units Ollector V V mA V kΩ MHz MHz
ESD protection Encoder1 Inputs (A1/A1+, A1, B1/E Single-ended mode compliance nput voltage, single-ended mode A/A+, B/B+ nput voltage, single-ended mode Z/Z+ nput current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance nput voltage, differential mode A/A+, B/B+, Minimum pulse	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "COW" Logic "HIGH" Floating voltage (not connected) Logic "HIGH" Logic "HIGH", Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open- collector / NPN Differential mode, or Single- ended driven by push-pull (TTL / CMOS) Single-ental mode, or Single- ental mode, or Single- ental mode, or Single- ental mode, or Single- ental mode, or Single-	±5 Min. TTL. 1.8 1.4 0 ±0.06 -7 0 0 0 0 1 50	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-co 1.6 1.2 6 0 IA-422-A ±0.2 +7 5 10	kV Units Ollector V V mA V kΩ MHz MHz μs
ESD protection Encoder1 Inputs (A1/A1+, A1, B1/E Single-ended mode compliance Input voltage, single-ended mode A/A+, B/B+ Input voltage, single-ended mode Z/Z+ Input current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode Input voltage, differential mode Input voltage, differential Input frequency Minimum pulse width Input voltage, any	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "COW" Logic "COW" Logic "COW" Logic "COW" Logic "COW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS4222 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open- collector / NPN Differential mode, or Single- ended driven by push-pull (TTL / CMOS) Single-ended mode, Open- collector / NPN Differential mode, or Single- ended driven by push-pull (TTL / CMOS) Absolute maximum values, continuous	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7 0 0 0 1	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2 +7 5	kV Units Ollector V W MHz MHz μs ns
SD protection Encoder1 Inputs A1/A1+, A1, B1/E Single-ended node compliance nput voltage, single-ended mode A/A+, B/B+ nput voltage, single-ended mode A/A+, B/B+, Z/Z+ Differential mode nput voltage, differential mode nput voltage, differential nput frequency Vinimum pulse width nput voltage, any	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "IGH" Floating voltage (not connected) Logic "LOW"; Pull to GND Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS422 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open-collector / NPN Differential mode, or Single-ended driven by push-pull (TTL / CMOS) Single-ended mode, or Single-ended driven by push-pull (TTL / CMOS) Absolute maximum values, continuous	±5 Min. TTL / 1.8 1.4 0 ±0.06 -7 0 0 0 0 1 50 -7	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-cc 1.6 1.2 6 0 IA-422-A ±0.2 +7 5 10 +7 +7	kV Units Ollector V V mA V kΩ MHz MHz μs
ESD protection Encoder1 Inputs (A1/A1+, A1-, B1/E Single-ended mode compliance nput voltage, single-ended mode A/A+, B/B+ nput voltage, single-ended mode Z/Z+ nput current, single-ended mode A/A+, B/B+, Z/Z+ Differential mode compliance nput voltage, differential mode nput voltage, differential mode impedance, differential nput frequency Vinimum pulse width	31+, B1-, Z1/Z1+, Z1-) Leave negative inputs disconnected Logic "LOW" Logic "COW" Logic "COW" Logic "COW" Logic "COW" Logic "COW" Logic "HIGH" Floating voltage (not connected) Logic "LOW" Logic "HIGH" Floating voltage (not connected) Logic "LOW"; Pull to GND Logic "HIGH"; Internal 2.2KΩ pull-up to +5 For full RS4222 compliance, see ² Hysteresis Common-mode range (A+ to GND, etc.) A1+ to A1-, B1+ to B1- Z1+ to Z1- Single-ended mode, Open- collector / NPN Differential mode, or Single- ended driven by push-pull (TTL / CMOS) Single-ended mode, Open- collector / NPN Differential mode, or Single- ended driven by push-pull (TTL / CMOS) Absolute maximum values, continuous	±5 Min. TTL. 1.8 1.4 0 ±0.06 -7 0 0 0 0 1 50	2 CMOS 3.3 4.7 5.5 0 TIA/E ±0.1	/ Open-co 1.6 1.2 6 0 IA-422-A ±0.2 +7 5 10	kV Units Ollector V W MHz MHz μs ns

Digital Outp (OUT0, OUT OUT5) ¹	uts 1, OUT2/Error, OUT3/Ready, OUT4,	Min.	Тур.	Max.	Units	
Mode compliance		PNP 24V				
Default state	Not supplied (+VLOG floating or to GND)	High-Z (floating)				
31210	Normal operation		Logic "	High"		
Output	Logic "HIGH"; output current = 0.2A		$V_{\text{LOG}}\text{-}0.2$	V_{LOG} -0.8		
	Logic "LOW"; output current = 0, no load	open-collector			.,	
voltage	Logic "HIGH", external load to GND		0		V	
	Absolute maximum, continuous	-0.3		V _{LOG} +0.3		
	Absolute maximum, surge $(duration \le 1s)^{\dagger}$	-0.5		V _{LOG} +0.5		
0.4.4	Logic "HIGH", source current, continuous			0.2	A	
Output current	Logic "HIGH", source current, pulse ≤ 5 s			0.4	А	
	Logic "LOW", means High-Z				mA	
Minimum pulse width		2			μs	
ESD protection	Human body model	±15			kV	
Mode compliance		NPN 24V				
Default state	Not supplied (+VLOG floating or to GND)		High-Z (floating)			
slale	Normal operation		High		-	
	Logic "LOW"; output current = 0.3A		0.2	0.8		
	Logic "HIGH"; output current = 0, no load	O	pen-collect	tor		
Output voltage	Logic "HIGH", external load to +V _{LOG}		VLOG		V	
	Absolute maximum, continuous	-0.3		V _{LOG} +0.3		
	Absolute maximum, surge	-0.5		V _{LOG} +0.5		
	$(duration \le 1s)^{T}$	-0.0		*LOG • 0.0		
0.4.4	Logic "LOW", sink current, continuous			0.3	А	
Output current	Logic "LOW", sink current, pulse ≤ 5 s			0.5	А	
	Logic "HIGH", means High-Z				mA	
Minimum pulse width	-	2			μs	
ESD protection	Human body model	±15			kV	

Encoder2 Inputs (A2+/Data+, A2-/Data-, B2+/Clk+, B2-/Clk-, Z2+, Z2-) ³		Min.	Тур.	Max.	Units
Differential mode compliance		TIA/EIA-422-A			
	Hysteresis	±0.06	±0.1	±0.2	
Input voltage	Differential mode	-14		+14	v
	Common-mode range (A+ to GND, etc.)	-11		+14	
Input impedance, differential	A2+, B2+, Z2+ A2-, B2-, Z2-		150		Ω
Input frequency	Differential mode	0		10	MHz
Minimum pulse width	Differential mode	50			ns

 3 Encoder2 differential input pins have internal 150 Ω termination resistors connected across

N° document

The digital might and example are examined of example at the original might be connected across the differential pairs, as close as possible to the drive input pins. Name Document template: P099.TQT.564.0001 First edition

Title of document

Last edition Visa : May 20, 2021

P022.016.E122.DSH.01B

iPOS4815 MZ-CAT **PRODUCT DATA SHEET**

¹ The digital inputs and outputs are software selectable as PNP or NPN

iPOS4815 MZ-CAT DATASHEET P/N: P022.016.E122

-preliminary-

Sin-Cos Encoder (Sin+, Sin-, Cos+,		Min.	Тур.	Max.	Units
Input voltage, differential	Sin+ to Sin-, Cos+ to Cos-		1	1.25	V_{PP}
	Operational range	-1	2.5	4	
Input voltage, any	Absolute maximum values, continuous	-7 +1	+7	v	
pin to GND	Absolute maximum, surge $(duration \le 1s)^{\dagger}$	-11		+14	
Input impedance	Differential, Sin+ to Sin-, Cos+ to Cos- ¹	4.2	4.7		kΩ
	Common-mode, to GND		2.2		kΩ
Resolution with interpolation	Software selectable, for one sine/cosine period	2		10	bits
Frequency	Sin-Cos interpolation	0		450	kHz
	Quadrature, no interpolation Human body model	0 ±1		10	MHz kV
ESD protection Analog 05V Inp		Min.	Typ	Max.	Units
Analog 05v mp	Operational range	0	Тур.	5	Units
Input voltage	Absolute maximum values, continuous	-12		+18	v
	Absolute maximum, surge $(duration \le 1s)^{\dagger}$			±36	
Input impedance	To GND		28		kΩ
Resolution			12		bits
Integral linearity				±2	bits
Offset error			±2	±10 ±3%	bits % FS ²
Gain error Bandwidth (-3Db)	Software selectable	0	±1%	±3%	% FS=
ESD protection	Human body model	±5		- 1	kV
RS-232	rianian boay nodel	Min.	Тур.	Max.	Units
Compliance				-232-C	onno
Bit rate	Software selectable	9600		115200	Baud
Short-circuit	232TX short to GND	0000	Guara	anteed	Buuu
ESD protection	Human body model	±2	ouure	lineeu	kV
Safe torque OFF		Min.	Turn	Marr	Units
(STO1+, STO1-, S			Тур.	Max.	
Safety function	According to EN61800-5-2		ΓΟ (Safe T		
EN 61800-5-1/ -2 and EN 61508-5- 3/ -4 Classification	Safety Integrity Level PFHD (probability of dangerous failures per hour)	safe 8*10 ⁻¹⁰	ty integrity ho	ur ⁻¹ (0.8 Fl	
	Performance Level		Cat3	/PLe	
EN13849-1	MTTFM (meantime to				
Classification Mode	dangerous failure)		377		years
compliance	Input floating (wiring	PNP			
Default state	disconnected)	Logic LOW			
	Logic "LOW"	-20		5.6	
Input voltage	Logic "HIGH"	18		36	v
input voitage	Absolute maximum, continuous	-20		+40	v
Input current	Logic "LOW"; pulled to GND Logic "HIGH", pulled to +Vlog		0 5	13	mA
Repetitive test pulses	Ignored high-low-high			5	ms
(high-low-high)				20	Hz
Fault reaction time	From internal fault detection to register DER bit 14 =1 and OUT2/Error high-to-low			30	ms
	From external STO low-high				
PWM operation delay	transition to PWM operation enabled			30	ms

	Min.	Тур.	Max.	Units	
	EtherC	AT (IEC6	1158-3/4	(5/6-12)	
	Fast Ethernet 100BASE-TX				
	(IEEE802.3u)				
	Auto-negotiation for 100Mbps/s full				
SELV/ PELV supply					
Requirement for motherboard			on Spar	Vrms	
				kV _{peak}	
5	-	150		n v _{peak}	
	100	100			
Human body model	±4			kV	
			is, such a	5 d	
LED signals			Max.	Units	
ED onnection		Common cathode to GND			
	Direct, no series resistor				
		0.7	1	mA	
Conformity		Тур.	Max.	Units	
2014/30/EU (EMC),					
2014/35/EU (LVD),					
2014/35/EU (LVD), 2011/65/EU (RoHS),					
2014/35/EU (LVD),				<u> </u>	
	ctions between drives are done dir ot conform to Ethernet IEEE802.3 ge difference between drives is kej supplementary GND link between ti inductance is best achieved by us	EtherC Fast Auto-neg Auto-neg Auto-neg EtherC Fast Auto-neg EtherC Requires separate +Vlog SELV/ PELV supply NOT complia Requirement for motherboard PCB routing 1.5 2-pair UTP Cat5 100 Human body model ±4 ections between drives are done directly, with ot conform to Ethernet IEEE802.3 100BASE- ige difference between drives is kept to a min upplementary GND link between the drives. inductance is best achieved by using large r / baseplate, or using copper conductive tape Min.	Image of the second	EtherCAT (IEC61158-3/4, Fast Ethernet 100BASi (IEEE802.3u) Auto-negotiation for 100Mt duplex NOT used by the iPOS4810, requires separate +Vlog SELV/ PELV supply compliant to IEEE802.3af "Mixed DC & Data" NOT compliant to IEEE802.3af "Mixed DC & Data" NOT compliant to IEEE802.3af Requirement for motherboard PCB routing 500 2-pair UTP Cat5 100 Human body model ±4 excitons between drives are done directly, without magnetics ot conform to Ethernet IEEE802.3 100BASE-TX), it is imperativ rige difference between drives is kept to a minimum. The installa supplementary GND link between the drives. This link must hav v inductance is best achieved by using large metal parts, such a / baseplate, or using copper conductive tape. Min. Typ. Max. Common cathode to C Direct, no series resis 0.7 1	

[†] Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

¹ For many applications, a 120Ω termination resistor should be connected across SIN+ to SIN-, and 2 "FS" stands for "Full Scale" across COS+ to COS-. Please consult the feedback device datasheet for confirmation.

Document template: P099.TQT.564.0001 Visa : Name First edition Last edition ALN May 4, 2021 May 20, 2021 Title of document N° document **TECHNOSOFT** 5 iPOS4815 MZ-CAT P022.016.E122.DSH.01B Page: 6 of 6 **PRODUCT DATA SHEET**