

→ HIGH FEED RATES

HIGH FEED RATES

QUADWORX® – this new innovation from Pokolm enables a high feed milling in general application. This state of the art milling tool is engineerd for roughing operations for steel, tools steel, cast iron and stainless as well. QUADWORX®-milling cutters provides a high productivity. The cycle time for roughing will be reduced drastically.

The QUADWORX® cutters are available as screw-on and shell mill version. The stand alone and patented DuoPlug®-system for maximum stiffness and best run-our accuracy completed the program. All cutters are manufactured with internal coolant supply for best process reliability in deep cavities.

DuoPlug®

Screw-on type

Shell type

The new designed QUADWORX® indexable inserts have 4 cutting edges and a special geometry, a combination of large corner radius and wiper edge. This ensured best performance in 2, 2 1/2 and 3D cutting. For increased tool life, all cutting edges were edge-treated and polished to reduce the friction between cutting material and insert.

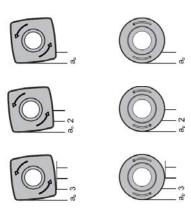
All cutters have integrated pocket seat (embedded) for more rigidity and longer tool life of the cutter body. The result is higher chip volume and increased productivity. Our high accuracy inserts are available in

grades HSC 05, P40, P25 and K10 as well as grade M40 with chip guide steps and our latest, modified coating PVST are highly economic through its no. of cutting edges and its increased tool life.

BRIGHT PROSPECTS...

40 and PVST are features for efficient machining of stainless-, acid- and heat-resistant materials. Extremely tough and high-temperature-resistant carbide in combination with our modified AlTiN-coating layer reduce built-up edges, increase thermal stability

and reduce friction between cutting edge and material at the same time. This results in a maximum process reliability, even with highest possible chip volume and results in lower costs per component.



In case you need further information about our stainless range, you can download our current brochure from our homepage www.pokolm.com or ask by phone / e-mail under \odot contacts (see back page) for this brochure.

TECHNICAL INFORMATION

Due to the reduced arc of contact, when machining vertical moulds, less cutting forces influence milling cutters, inserts and machine spindle. These following graphics explain the kind of geometry influence to those cutting forces. One further element is the reduced power consumption of the machine, which allows more careful treatment of the machine

omparing different arcs of contact for increasing cutting depths (ap up to ap 3) illustrate the reason of better running smoothness. As soon as the ap-value has exceeded the size of our QUADWORX®-insert's minor cutting edge (ap 3), the milling cutter gets a side clearance and thus it is cutting free and radial forces for milling cutter, inserts and machine spindle are decisively reduced.

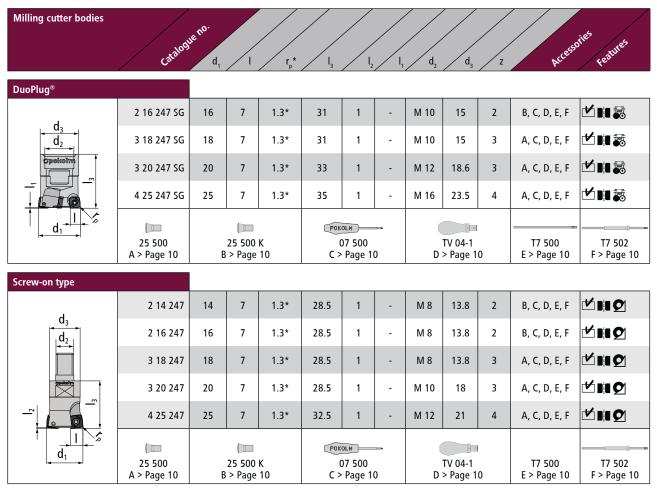
Please take notice of the theoretical corner radius which has to be programmed. Also this type of milling cutters leaves a material stock, not

pre-determinable. The r_p -values as well as operation data and measuring point diameter d_p will be mentioned on the following pages.

SUMMARY OF ADVANTAGES:

- 4 cutting edges per insert for extreme economic applications
- very high chip removal rates and very easy cutting actions
- thanks to the inserts positioning via its second clearance face and the orthogonal arranged insert seats in the cutter body, any twisting of the insert is avoided
- maximum process reliability specially in interrupted cutting applications
- wiper edge and large corner radius generate high accuracy surfaces, already in roughing operations

⊕ CONTENT


	I	Page
⊕	QUADWORX® "S"	
	Dimensions and operation data	8
	Extended operation data / Accessories	10
	From practice to practice	11
⊕	QUADWORX® "M"	
	Dimensions and operation data	12
	Extended operation data / Accessories	14
	From practice to practice	15
⊕	QUADWORX® "L"	
	Dimensions and operation data	16
	Extended operation data / Accessories	
	From practice to practice	19

Size "S"

- 4 cutting edges per insert for extremely economic applications
- very high chip removal rates and very easy cutting actions
- all tools are provided with internal coolant supply and integrated pocket seats
- extremely high feed rates up to 1.5 mm feed per tooth (f_.)

 $^{^{\}star}$ corner radius to be programmed

QUADWORX $^{\circ}$ -Inserts Size "S", ISO-Standard: SDMX / SDMT 07 02 05 SN

Inserts	Catalogue no	. ISO Standard	Carbide grade	Coating	/1		//	M
	02 47 837	SDMX 07 02 05 SN	HSC 05	PVTi	7	2,38	0,5	M 2,5
	02 47 842	SDMX 07 02 05 SN	P40	PVTi	7	2,38	0,5	M 2,5
	02 47 896	SDMT 07 02 05 SN	M40	PVST	7	2,38	0,5	M 2,5
5								

Cutting Speeds V_c in m/min

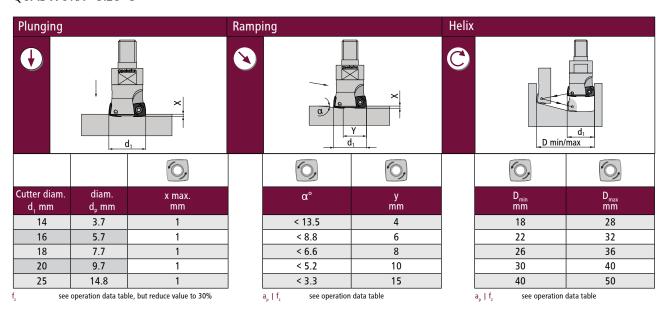
Material	Applicated	, Insert	radius	Machining	rates HSCUST	puri Padan	i Magast
Steel		0.5	7	roughing		100-200	
Steel		0.5	′ [finishing			
High tomporature allows	mperature alloys	0.5	7	roughing			40-80
riigii teliiperature alloys				finishing			60-120
Stainless steel		0.5	7	roughing			80-180
Statilless steel		0.5	,	finishing			110-250
Cast irons		0.5	7	roughing	160-300		
Cast IIOIIs		υ.5	/	finishing			
Hardanad materials	*	0.5	7	roughing	100-180		
Hardened materials				finishing			

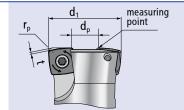
feed per tooth (f_z)) | d.o.c. (a_p)

Material	Insert	Insert	radius	lead he troth (1)	HECOS	pari pag par	MADRYST
Steel		0.5	7	f _z (mm)		0.3-1.5	
Steel	1 5	0.3	,	a _p (mm)		0.2-0.7	
High temperature alloys		0.5	7	f _z (mm)			0.2-0.8
riigii teiriperature alloys	1 5	- 0.5	,	a _p (mm)			0.1-0.5
Stainless steel		0.5	7	f _z (mm)			0.2-1.0
Statilless steel	5	0.3	,	a _p (mm)			0.1-0.5
Cast irons		0.5	7	f _z (mm)	0.3-1.5		
Cast IIOIIs	100,5	0.5	,	a _p (mm)	0.2-0.7		
Hardened materials		0.5	7	f _z (mm)	0.3-1.0		
natuetteu filateriais	1 5	0.5	,	a _p (mm)	0.2-0.5		

Major application

Minor application





EXTENDED OPERATION DATA

QUADWORX® Size "S"

Technical information

For the CAD/CAM set-up please program 1.3 mm corner radius (r_s).

The remainder of the material is theoretically 0.51 mm (t).

Please use "d" for tool length measurement.

QUADWORX® Size "S" -Accessories

Accessories	Catalogue No.	Description		Dinensir	lu ₂	
	25 500	Torxscrew M 1.8	M 2.5	L 5.0	Т 7	
	25 500 K	Torxscrew M 1.8	M 2.5	L 4.5	Т 7	
POKOLM	07 500	Torx Screwdriver T 7	Т 7			
	TV 04-1	Torque Screwdriver Vario® S with scale	from 0.4 Nm	up to 0.8 Nm	with scale	
-	T7 500	Torx interchangable bit for Torque Vario®	T 7	L 175	max. 0.9 Nm	
0	T7 502	Torx MagicSpring compatible bit for Torque Vario®	T 7	L 175	max. 0.9 Nm	

Starting torque for Torxscrews: M_d 1.28 Nm

Definitions and dimensions

- a_p depth of cut in (mm)
- feed per tooth in (mm)
- D_{max}= maximum bore diameter depending on cutter diameter in [mm]
- x maximum plunge depth
- D_{min}= minimum bore diameter depending on cutter diameter in [mm]
- minimum travel in [mm]
- α angle of inclination in [°]

FROM PRACTICE TO PRACTICE

JOB TITLE:

Process optimizing of a component from material 1.4534 (X3CrNiMoAl13-8-2). This is equal to the US-alloy PH 13-8Mo, a high-tensile stainless steel with aircraft and space conditions. Previously, a slot was produced with a Pokolm threaded shank end mill body No. 3 15 235/12 (15 mm diam., r=3.5). The slot is curved and open on both ends. Dimensions are: 150 mm long, 20 mm wide and 70 mm deep. With this tool mentioned, the customer could produce 1 complete slot. After that, inserts had to

be turned in order to secure continued process reliability. This additional downtime had significant influence on the component's costs. The customer had to find a solution to reduce machining time as well as downtime. The new tool QUADWORX® "S" was selected to be the right tool for this application. It was assumed that the milling cutter 2 16 247 (16 mm diam., r_p 1.3) together with our new insert 2 47 896 should be the correct selection for this job.

MACHINE	MATERIAL	PROGRAMMING SYSTEM
DMU 60 P	1.4534	MillPlus

The slots of this component have been produced countour-parallel in z-constant cycle in climb milling as well as conventional milling. Regarding machining time, the feed rate and the chip volume have been more than doubled. This QUADWORX® "S" combination allows a 7-times increase of

tooth load compared with the previous end mills with round inserts. The high tensile and forged component was machined using constant coolant supply in order to avoid any heating up of the component.

EXAMPLE FROM	PRACTICE:		RESULT:
	PREVIOUSLY	NOW	Machining time of this component has been
machining:	slot		reduced from 40 to 20 minutes. At the same time, tool
material:	1.4534 (Alloy PH13-8)		life increased to 2 components with these new inserts
arbor:	00 16 750 S (16 mm diam., SK 40)		QUADWORX® "S" 02 47 896, without any insert change. Even the increased costs for using this new QUADWORX® "S"-
extension:	40 08 601		combination has already payed itself off after machining only
cutter body:	3 15 235/12 (15 mm diam. / r = 3.5)	2 16 247 (16 mm diam. / r _p = 1.3)	1 component.
insert:	01 07 895	02 47 896, M40	
coating:	PVGM	PVST	160%
overhang:	73 mm	73 mm	140%
\mathbf{v}_{c} (speed):	170 m/min	170 m/min	120%
\mathbf{v}_{f} (feed rate):	900 mm/min	1,800 mm/min	80%
S (revolutions):	3,400 1/min	3,400 1/min	
\mathbf{f}_{z} (feed per tooth):	0.083 mm	0.59 mm	40% - 18 19 19 19 19 19 19 19
a_P (depth of cut):	0.3 mm	0.3 mm	20%- 190 190 190 190 190 190 190 190 190 190
a_e (width of cut):	5 – 15 mm	4 – 16 mm	0%
chip volume:	2.13 cm ³ /min = 0.13 cu. in./min	4.32 cm ³ /min = 0.264 cu. in./min	
machining time:	40 min	20 min	

Size "M"

- 4 cutting edges per insert for extremely economic applications
- very high chip removal rates and very easy cutting actions
- all tools are provided with internal coolant supply and integrated pocket seats
- extremely high feed rates up to 2.2 mm feed per tooth (f_.)
- NEW: Positive inserts P40 characterized by a smaller land and 10° rake angle. For tough materials like stainless steel, low carbon steel and cast steel.

Milling cutter bodies	Catalogu	s ho.									Access	ries features
	Catte	d ₁	<u>/ I</u>	/ r _p *	/ l _{3 ,}	/ l ₂	/ I ₁	d ₂	d ₃	/ z	Acce	/ tegt
DuoPlug [®]												
d_3	2 22 248 SG	22	9	1.5*	35.5	1.5	-	M 12	18.5	2	A, B, C, D, E	
opokolm	3 25 248 SG	25	9	1.5*	40	1.5	-	M 16	23.5	3	A, B, C, D, E	
d ₁	30 500 A > Page 14		окоLM 10 500 > Page		c	TV 1-5 > Page 14	ļ		10 500 > Page 14	==		10 502 Page 14
Screw-on type												
	2 22 248	22	9	1.5*	29	1.5	-	M 10	18	2	A, B, C, D, E	₩ BE Ø
d_3	3 25 248	25	9	1.5*	33	1.5	-	M 12	21	3	A, B, C, D, E	
	4 30 248	30	9	1.5*	42	1.5	-	M 16	29	4	A, B, C, D, E	
	4 32 248	32	9	1.5*	42	1.5	-	M 16	29	4	A, B, C, D, E	
2 2-	4 35 248	35	9	1.5*	42	1.5	-	M 16	29	4	A, B, C, D, E	
d_1	5 35 248	35	9	1.5*	42	1.5	-	M 16	29	5	A, B, C, D, E	
u1 →	5 42 248	42	9	1.5*	42	1.5	-	M 16	29	5	A, B, C, D, E	
30 500 A > Page 14		10 500 B > Page 14		c	TV 1-5 C > Page 14		T10 500 D > Page 14		T10 502 E > Page 14			
Shell type												
d_3	5 42 348	42	9	1.5*	42.5	1.5	-	16	35	5	A, B, C, D, E	
opoleolivo di	6 52 348	52	9	1.5*	52.5	1.5	-	22	40	6	A, B, C, D, E	
	30 500 A > Page 14		око <u>ь</u> 10 500 > Page		TV 1-5 C > Page 14		T10 500 D > Page 14		T10 502 E > Page 14			
* corner radius to be programn	med											

internal coolant supply

NEU latest items!

available as long as stock lasts

incorporated inserts

? on request

clamping flat

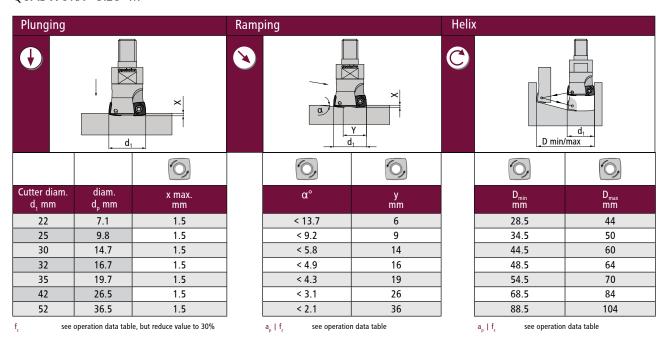
stock item, subject to confirmation

${\rm QUADWORX}^{\rm @-} {\rm Inserts}$ Size "M", ISO Standard: SDMX / SDHX / SDMT 09 T3 07 SN

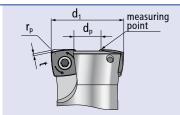
Indexable insert	Catalogue Mo.	ISO Standard	Carbide grade	Coating	/1	/ /s	/ /r	M
	03 48 842	SDMX 09 T3 07 SN	P40	PVTi	9	3.5	0.7	М 3
	03 48 846	SDMX 09 T3 07 SN	P40	PVGO	9	3.5	0.7	M 3
	03 48 852	SDMX 09 T3 07 SN	P25	PVTi	9	3.5	0.7	M 3
	03 48 860	SDHX 09 T3 07 SN	K10	PVTi	9	3.5	0.7	M 3
	03 48 848 NEW	SDMT 09 T3 07 SN	P40	PVGO	9	3.5	0.7	M 3
5	03 48 896	SDMT 09 T3 07 SN	M40	PVST	9	3.5	0.7	M 3

Cutting Speeds V_c in m/min

Material	Application	Inser	. tadius	Machin	ling rates	pyri pao	Pyrii Pao	PAGO PSTS	Pyri Mag byst
Steel		0.7	9	roughing		100-200		150-250	
Steel	▼*	0.7	9	finishing					
Steel	₩	0.7	9	roughing			100-200		
Steel	▼	0.7	9	finishing			160-250		
High town quoting allows		0.7 9	roughing					40-80	
High-temperature alloys	₩	0.7	9	finishing					60-120
Stainless steel		0.7	9	roughing					80-180
Stainless steel	₩	0.7	9	finishing					110-250
Continue		0.7		roughing	160-300				
Cast iron		0.7	9	finishing					
Handanad materials		0.7		roughing	100-180				
Hardened materials		0.7	0.7 9						


feed per tooth (f_z)) | d.o.c. (a_p)

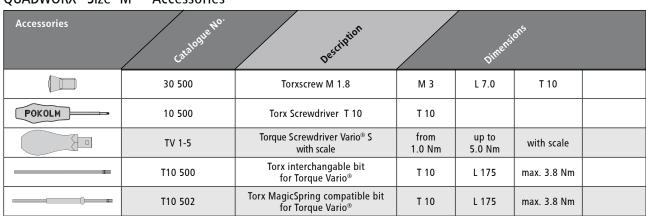
Material	Insert	Insert	radius	feed bettoo	(18) (18) (18)	pyri pao	pyři pao	PAGO PSS	Mr Pari
Steel		0.7	9	f _z (mm)		0.5-2.0	0.5-2.0	0.5-2.0	
Steel	5	0.7	9	a _p (mm)		0.3-1.0	0.3-1.0	0.3-1.0	
High-temperature alloys		0.7	.7 9	f _z (mm)					0.3-0.9
riigii-teiriperature alioys	nys S	0.7		a _p (mm)					0.2-0.7
Stainless steel		0.7	9	f _z (mm)					0.3-1.2
Staffless steel	100,5	0.7	9	a _p (mm)					0.2-0.9
Cast ivan		0.7	9	f _z (mm)	0.5-2.2				
Cast Iron	Cast iron	0.7	9	a _p (mm)	0.2-1.2				
Hardened materials		0.7	9	f _z (mm)	0.2-1.0				
Hardelled Haterials	1	0.7	3	a _p (mm)	0.2-0.5				



EXTENDED OPERATION DATA

QUADWORX® Size "M"

Technical information



For the CAD/CAM set-up please program 1.5 mm corner radius (r_p).

The remainder of the material is theoretically 0.65 mm (t).

Please use "d" for tool length measurement.

QUADWORX® Size "M" - Accessories

Starting torque for Torxscrews: M_d 2.25 Nm

Definitions and dimensions

- a_p depth of cut in (mm)
 - feed per tooth in (mm)
- D_{max} = maximum bore diameter depending on cutter diameter in [mm]
- maximum plunge depth
- D_{min}= minimum bore diameter depending on cutter diameter in [mm]
- y minimum travel in [mm]
- α angle of inclination in [°]

FROM PRACTICE TO PRACTICE

JOB TITLE:

VEMO Vereinigte Modellbau GmbH from the town of Kindsbach has been formed in 1971 as a company merger of 2 model making companies. Their more than 30 years experience as supplier of automotive industry and machine tool makers are the basis of their success today. With latest CNC-machining centres in combination with different CNC-programming systems, VEMO offers optimum qualification for a prosperous co-operation with their customers. A base plate, equipped with 4 mould inserts, should be prepared up to the pre-finished condition in the shortest

possible time. The goal was finding the optimum between cost for tooling, process reliability and machining time. The roughing operation of those 4 mould inserts has been settled in less than 72 minutes by the largest diameter cutter body from our QUADWORX® "M"-range (6 52 348). The following operation of removing remaining material should be realized with a QUADWORX® "M"- cutter body 3 25 248 in a preferably manless operation without any machine downtime.

MACHINE	MATERIAL	PROGRAMMING SYSTEM
ZPS 2080	1.2312	DEPO-CAM / Euklid

These mould inserts for the foundry pattern have been machined in a z-constant cycle from inside to outside, with the focus for a maximum possible manless machining time. A base plate, fixed on the machine table with power clamps, cares for correct clamping on a ZPS 2080 machine with Selca control. With a combination of a Pokolm reduction sleeve (SK 50 to MTS 3) and a Morse

Taper Adapter with M10 internal thread, together with the cutter body 3 25 248 from our QUADWORX® "M"-range, this operation could be finished, slim and rigid. The complete machining time for those 4 inserts from roughing to pre-finishing was 128 minutes, all this with minimum tool costs and maximum cutting parameters.

EXAMPLE FROM PRACTICE:

component: mould insert material: 1.2312

arbor: 50 3 710 (morse taper 3, SK 50)

 extension:
 30 610

 cutter body:
 3 25 248

 $(25 \text{ mm diam.} / r_p = 1.5)$

insert: 03 48 842, P40

coating: PVTi overhang: 113 mm \mathbf{v}_{c} (speed.): 196 m/min \mathbf{v}_{f} (feed rate): 8,000 mm/min **S** (revolutions): 2,500 1/min f_z (feed per tooth): 1 07 mm a_p (depth of cut): 0.7 mm ae (width of cut): 15 mm

chip volume: 84 cm³/min = 5.13 cu. in./min

machining time: 56 min

RESULT:

Machining time for roughing and removing remaining material was less than 130 minutes without any insert changes. This has contributed to an optimum use of the inserts and essential operation time. The increased chip volume as well as an almost manless roughing operation have contributed to a considerable cost reduction and remarkable time gaining for all following operations.

Size "L"

- 4 cutting edges per insert for extremely economic applications
- very high chip removal rates and very easy cutting actions
- all tools are provided with internal coolant supply and integrated pocket seats
- extremely high feed rates up to 2.5 mm mm feed per tooth (f₂)

Milling cutter bodies	Catalogue	, no.	/				/ /I,	d ₂	d ₃	/ z	Access	ories Features
Screw-on type												
d_3	3 35 249	35	10	2.3*	42	2.5	-	M 16	29	3	A, B, C, D, E	≠ ii Ø
	4 42 249	42	10	2.3*	42	2.5	-	M 16	29	4	A, B, C, D, E	
	40 505 K A > Page 18	15 500 B > Page 18		TV 2-8 C > Page 18		T15 500 D > Page 18		T15 502 E > Page 18				
Shell type												
	4 42 349	42	10	2.3*	42	2.5	-	16	35	4	A, C, D, E, F	₩
d_3	5 52 349	52	10	2.3*	52	2.5	-	22	40	5	B, C, D, E, F	₩
d ₁	7 66 349	66	10	2.3*	52	2.5	-	27	48	7	B, C, D, E, F	
	8 80 349	80	10	2.3*	52	2.5	-	27	60	8	B, C, D, E, F	
	40 505 K A > Page 18	E	40 505 3 > Page			15 500 > Page 18	-8	I	TV 2-8 > Page 18	3	T15 500 E > Page 18	T15 502 F > Page 18

^{*}corner radius to be programmed

QUADWORX®-Inserts Size "L", ISO Standard: SDMX / SDHX / SDMT 100510

Indexable insert	Catalogu	E vo.			/			
	Carr	ISO Standard	Carbide Grade	Coating	<u>/ I</u>	<u></u>	<u>/</u> r	M
	04 49 842	SDMX100510	P40	PVTi	10	5	1	M 4
	04 49 846	SDMX100510	P40	PVGO	10	5	1	M 4
	04 49 852	SDMX100510	P25	PVTi	10	5	1	M 4
	04 49 860	SDHX100510	K10	PVTi	10	5	1	M 4
	04 49 896	SDMT 100510	M40	PVST	10	5	1	M 4
S								

internal coolant supply

NEW latest items!

DuoPlug®

available as long as stock lasts

incorporated inserts ? on request

clamping flat

stock item, subject to confirmation

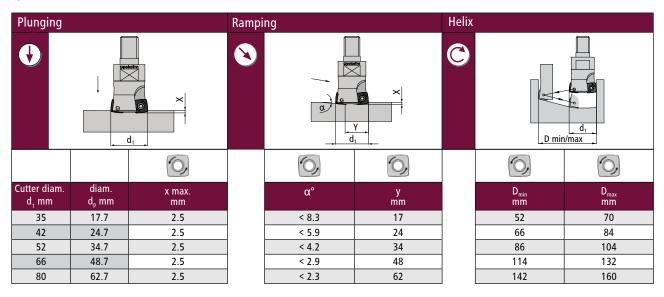
Cutting speeds V_c in m/min

Material	Applica	tion Inse	et radius	Machinin	grates K10	Ni, bao _t	Wii PAO	Meo bizi	Wii Mad Prist
Steel		1	10	roughing		100-200		150-250	
Steel		'	10	finishing					
Steel	*	1	10	roughing			100-200		
Steel	•			finishing			160-250		
		1	10	roughing					40-80
High-temperature alloys	A 4			finishing					60-120
Stainless steel		1	10	roughing					80-180
Stalliess steel		'	10	finishing					110-250
Cast iron	*	1	10	roughing	140-250				
				finishing					
Hardened materials		1	10	roughing	80-160				
natuetieu materiais		1		finishing					

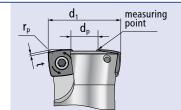
feed per tooth (f_z)) | d.o.c. (a_p)

Material	Irear	Int	ert radius	feed Pertooth	^k ios.	Jri PAD	pyri Pag	paso pasi	Wri MAD PYST
Steel				f _z (mm)		0.3-2.5	0.3-2.5	0.3-2.5	
Steet	5	1	10	a _p (mm)		0.3-1.5	0.3-1.5	0.3-1.5	
High-temperature alloys		1	10	f _z (mm)					0.35-1.0
nigh-temperature alloys	1 1 5	'	10	a _p (mm)					0.25-0.9
Stainless steel		1	10	f _z (mm)					0.35-1.5
Stalliess steel	5	ı	10	a _p (mm)					0.25-1.5
Cast iron		1	10	f _z (mm)	0.3-2.5				
Cast IIIII	5 5	'	10	a _p (mm)	0.3-1.7				
Hardened materials		1	10 -	f _z (mm)	0.3-1.5				
Harvelled Haterials		'		a _p (mm)	0.3-0.8				

roughing Major application Minor application roughing


finishing

finishing



EXTENDED OPERATION DATA

QUADWORX® Size "L"

Technical information

For the CAD/CAM set-up please program 2.3 mm corner radius (r_s).

The remainder of the material is theoretically 0.83 mm (t).

Please use "d" for tool length measurement.

QUADWORX® Size "L" - Accessories

Accessories	Catalogue No.	Description		Dinension	ş	
	40 505	Torxscrew M 4	M 4	L 10.58	T 15	
	40 505 K	Torxscrew M 4	M 4	L 9.35	T 15 Plus	
POKOLM	15 500	Torx Screwdriver T 15	T 15			
	TV 2-8	Torque Screwdriver Vario [®] S with scale	from 2.0 Nm	up to 8.0 Nm	with scale	
	T15 500	Torx interchangable bit for Torque Vario®	T 15	L 175	max. 5.5 Nm	
-	T15 502	Torx MagicSpring compatible bit for Torque Vario®	T 15	L 175	max. 5.5 Nm	

Starting torque for Torxscrews: M_d 4 Nm

Definitions and dimensions

- a_p depth of cut in (mm)
 - feed per tooth in (mm)
- $\begin{array}{ll} D_{max} = & maximum \ bore \ diameter \ depending \ on \\ & cutter \ diameter \ in \ [mm] \\ x & maximum \ plunge \ depth \end{array}$
- $\begin{array}{ll} {\rm D_{min}}{\rm =} & {\rm minimum~bore~diameter~depending~on} \\ & {\rm cutter~diameter~in~[mm]} \end{array}$
- $\alpha \qquad \text{angle of inclination in } [^\circ]$
- y minimum travel in [mm]
- 18

FROM PRACTICE TO PRACTICE

JOB TITLE:

The company WWS Metallformen GmbH from the town of Hatzenbühl manufactures prototype and duplicate products together with the required metal forming moulds since more than 20 years. Specially, their service from design of those prototype components, conversion into CAD/CAM systems up to production of the metal forming moulds and the first tryouts, is very much appreciated by their customers. WWS supplies into all fields of sheet fabricating industry, from consumer goods industry, medical technology, automotive engineering and last but not least, complex deep-drawing parts for aircraftand spaceware. Up to now, WWS machines their metal forming moulds with cutter bodies for round inserts from Pokolm. The milling cutter 52 310/7 (52 mm diam., r=6) offers most universal application possibilities and has been very much appreciated by our customers. But the power consumption related to the chip volume causes some problems for our customers in certain machining operations, specially, when female moulds with small draft angles have to be produced. Due to the geometric characteristics of the round inserts and those radial forces which occur during milling, vibrations arise suddenly, again and again. Feed rates and cutting depths have to be reduced in order to secure process reliability.

MACHINE	MATERIAL	PROGRAMMING SYSTEM
ZPS 1060	St 52-3	Cimatron

The male and female die of a deep-drawing mould for a truck-muffler has been machined in a z-constant circular-pocket cycle from inside to outside. Main focus was the maximum achievable chip volume with smallest possible spindle load. The component, clamped solid, was machined on a ZPS milling machine type 1060 with

Selca control. There was no difficulty in maching material ST 52-3 itself, but the problem is a process reliable machining of those burn-out contours with a hardness of > 50 HRC. Those requirements habe been fulfilled and exceeded by our QUADWORX® "L" tooling.

EXAMPLE FROM PRACTICE:

component: female drawing die

material: St 52-3 arbor: 100 22 710

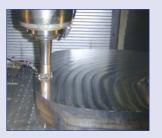
(22 mm diam., SK 50)

cutter body: 5 52 349

(52 mm diam., r 2.3)

04 49 852, P25 insert:

PVTi


coating: 153 mm overhang: 212 m/min \mathbf{v}_{c} (.speed.): v_f (feed rate): 8.000 mm/min S (revolutions): 1,300 1/min \mathbf{f}_z (feed per tooth): 1.23 mm a_p (depth of cut): 1.5 mm ae (width of cut): 31 mm

chip volume: 372 cm3/min = 22.7 cu.in./min

machining time: 45 min

RESULT:

Machining time for roughing this female drawing die has been reduced by 50 %. And this with an only 5 % increase of spindle load, better smoothness of running and less vibrations. Increased chip volume together with the small increase in spindle load have reduced the costs for roughing operations by more than 50 % and the customer achieved a considerable time gaining for his following operations.

→ CONTACT

Pokolm Frästechnik GmbH & Co. KG

Adam-Opel-Straße 5 33428 Harsewinkel Germany

fon: +49 5247 9361-0 fax: +49 5247 9361-99 email: info@pokolm.com internet: www.pokolm.com

