Type sheet

Deflagration and endurance burning proof pressure relief device KITO ${ }^{\circledR}$ DE/cont. 20

Application

Endurance burning proof pressure relief device for portable tanks (GGVSE/ADR and GGVSE/RID) for the transport of flammable liquids and gases of explosion group IIB3 (MESG $\geq 0.65 \mathrm{~mm}$) with exception of carbon disulphide. An operating temperature of $60^{\circ} \mathrm{C}$ must not be exceeded. For safe tank pressure relief to the atmosphere before opening of the tank caps or connected lines. A pipe connection instead of the cap is not allowed.

Dimensions (mm)

DIN	ASME	\mathbf{D}	$\mathbf{D 1}$	\mathbf{H}	\mathbf{L}	$\mathbf{k g}$
$\mathbf{4 0 ~ P N ~ 4 0 ~}$	$\mathbf{1} 1 / 24$	150	20	111	160	1.7

Example for order

KITO ${ }^{\circledR}$ DE/cont. 20 DN 40 PN 40
(design with flange connection DN 40 PN 40 type A)
Type examination certificate to EN ISO 16852 and ($€$-marking in accordance to ATEX-Directive 2014/34/EU

KITO Armaturen GmbH	2	+49 (0) 531 23000-0		M 6 N
Grotrian-Steinweg-Str. 1c	直	+49 (0) 531 23000-10	Date:	05-2018
D-38112 Braunschweig	岛	www.kito.de	Created:	Abt. Doku KITO
VAT Reg.No DE812887561	Δ	info@kito.de	Design subject to change	

Type sheet
Deflagration and endurance burning proof pressure relief device KITO ${ }^{\circledR}$ DE/cont. 20

Design

	standard	optinally
ball valve	stainless steel mat. no. 1.4401	
housing	stainless steel mat. no. 1.4581	
KITO $^{\circledR}$-gridt	stainless steel mat. no. 1.4571	
gaskets	PTFE	
bolts	A4	
screw cap	stainless steel mat. no. 1.4571	drilled to ASME B16.5 Class 150 RF
flange connection	drilled to EN 1092-1 type A	

Performance curves

Flow capacity V based on air of a density $\rho=1.29 \mathrm{~kg} / \mathrm{m}^{3}$ at $\mathrm{T}=273 \mathrm{~K}$ and atmospheric pressure $\mathrm{p}=1.013 \mathrm{mbar}$. For other gases the flow can be approximately calculated by

$$
\dot{\mathrm{V}}=\dot{\mathrm{V}}_{\mathrm{b}} \cdot \sqrt{\frac{\rho_{\mathrm{b}}}{1.29}} \text { or } \quad \dot{\mathrm{V}}_{\mathrm{b}}=\dot{\mathrm{V}} \cdot \sqrt{\frac{1.29}{\rho_{\mathrm{b}}}}
$$

