

# SPECIFICATION

**Product Name: Mainstream ETCO2 Sensor** 

Module Item No.: CM2200

Version: V0.2

Date: July 02, 2020



# **Revision**

| No. | Version | Content                | Reviser  | Date       |
|-----|---------|------------------------|----------|------------|
| 1   | V0.1    | First Edition          | Mei Yang | 2018-11-01 |
| 2   | V0.2    | Company Name Amendment | Fei Ruan | 2020-7-02  |
|     |         |                        |          |            |
|     |         |                        |          |            |



# Mainstream ETCO2 Module CM2200



# **Applications**

- ♦ Non-Invasive Medical Ventilator
- ♦ Clinical Anesthetic Machine
- PACU, ICU, OR, EMS, Pre-hospital Rescue

# **Description**

Mainstream ETCO2 module CM2200 is designed by the principle of infrared absorption spectroscopy for the determination of the concentration of CO2 at the end of exhaled breath. It provides measurement of End-tidal Carbon Dioxide (ETCO2), respiration rate, and a clear, accurate capnogram at all respiratory rate up to 150 breaths per minute.

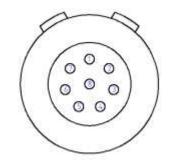
CM2200 is easy to be integrated to patient monitors, medical ventilator and anesthesia machines. Also, it is very compact, flexible, reliable and cost-effective.

CM2200 is one of the OEM solutions we have developed for our customers, we have also other solutions for our customers and would like to support your new OEM requirement with core technology and great service.

## Features

- ♦ Based on principle of NDIR, infrared absorption spectroscopy, widely used to monitor the respiratory end tidal CO2 concentration and respiration rate.
- ♦ Fast response, reliable
- ♦ Compact, easy to be integrated to patient monitors, medical ventilator and anesthesia machines.
- ♦ Compensation technology used for high accuracy of temperature
- ♦ Low maintenance costs, long lifespan.
- ♦ With EMI system, avoid interference of electromagnetic.
- ♦ OEM solution available.




# **Specifications**

| Mainstream ET0            | CO2 Module Specification                                                                                                                                  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Transducer Type           | Mainstream ETCO2 sensor CM2200                                                                                                                            |  |
| Principle of Operation    | Non-dispersive Infrared (NDIR)                                                                                                                            |  |
| Energy Emitting Device    | Proprietary High Efficiency IR Source                                                                                                                     |  |
| Data Output               | CO2 Gas Concentration (mmHg), End-tidal CO2, Inspired CO2, Respiratory Rate.                                                                              |  |
| EtCO2 Measurement Range   | 0 to 150mm Hg; 0 to 20kPa (at 760mm Hg); 0 to 19.7%                                                                                                       |  |
| EtCO2 Resolution          | 0.1mmHg                                                                                                                                                   |  |
| EtCO2 Accuracy            | 0-40mmHg: ±2mmHg;<br>41-70mmHg: ±5% of reading<br>71-100mmHg: ±8% of reading<br>100-150mmHg: ±10% of reading                                              |  |
| Respiration Rate Range    | 0 to 150 Breaths Per Minute (BPM)                                                                                                                         |  |
| Respiration Rate Accuracy | ±1 breath                                                                                                                                                 |  |
| Calibration               | No routine user calibration required. An airway adapter zero is required when changing airway adapter.                                                    |  |
| CO2 Stability             | Short term drift: Drift over four hours shall not exceed 0.8mmHg max.  Long term drift: Accuracy specification will be maintained over a 120-hour period. |  |
| Input Voltage             | 5.00 Volts (± 5%)                                                                                                                                         |  |
| Power Consumption         | 500mW                                                                                                                                                     |  |
| Peak Current              | ≤240mA                                                                                                                                                    |  |
| Sample Frequency          | 16Hz                                                                                                                                                      |  |
| Initialization Time       | Displayed in less than 15s, full specifications within 2 minutes (25°C)                                                                                   |  |
| Response Time             | Detector: 28ms System: 200ms                                                                                                                              |  |
| Compensation              | Barometric pressure:400 mmHg to 850 mmHg                                                                                                                  |  |
| Airway Adapters           | Single patient uses or reusable, < 5 cc deadspace (Adult), < 1 cc deadspace (Infant) Adapter taper meets ISO 5356-1                                       |  |
| Temperature & humidity    | Operating: 0°C to 45°C, 10 to 90%RH, non-condensing<br>Storage: -40 to 70°C, < 90% RH, non-condensing                                                     |  |
| Data Interface            | Highly configurable serial digital interface (TTL/RS232 Level)                                                                                            |  |
| Interconnection           | Compatible Lemo Redel 8-pin plastic                                                                                                                       |  |
| Baud Rate                 | 19200-N-8-1                                                                                                                                               |  |
| Dimensions                | 52 mm *23 mm *36mm                                                                                                                                        |  |
|                           |                                                                                                                                                           |  |



# **Pin Definition**





# **Drawing 1 ETCO2 Module CM2200**

# O/I Definition List

| Pin                               | Item         | Description                 |
|-----------------------------------|--------------|-----------------------------|
| 1                                 | Power Supply | VA 5.0V                     |
| 2                                 | Shield       | Shield                      |
| 3                                 | DGND         | Digital Ground              |
| 4                                 | Power Supply | VA 5.0V                     |
| 5                                 | TXD          | Serial Data from the Module |
| 6                                 | RXD          | Serial Data from Host       |
| 7                                 | AGND         | Analog Ground               |
| 8                                 | NC           | No Connection               |
| Notes: Pin 5, 6 is serial signal. |              |                             |

Be careful of connection with external communication.



#### 1. Protocol Overview

- 1) The communication interface follows RS232 standard. Baud Rate: 19200bps, Start Bits: 1, Data Bits: 8, Stop Bits: 1, Parity: No.
- 2) The protocol data are hexadecimal data. For example, 46h in hexadecimal is 70d in decimal;

## 2. Protocol Format Description

#### 2.1 Protocol Format

The data is transmitted and received in the form of data package, and the format is as below:

CMD - NBF - [BYTE0, BYTE1 ··· BYTEn] - CKS

**Description:** 

CMD: Command, single byte, range 80h-FFH

NBF: The number of bytes after the current byte, including the length of the check sum [BYTE0, BYTE1 ··· BYTEn]

BYTEn: Data transmitted

**CKS:** Checksums

#### 2.2 Checksum Calculation

Checksum calculation formula CKS= (not (CMD+NBF+[BYTE0]+ [BYTE1]+···[BYTE1]) +1) &7Fh The sample program (C language) is as follows:

```
unsigned char ChecksumCal(unsigned char *buf,unsigned char Len)
{
  unsigned char checksum=0,i=0;
  for (i = 0; i < Len; i++)
  {
     checksum += buf[i];
  }
  checksum = (-checksum) & 0x7F;
  return checksum;
}</pre>
```

## 2.3 Function List

| No. | Function                           | Command | Description                                                      | Remark                         |
|-----|------------------------------------|---------|------------------------------------------------------------------|--------------------------------|
| 1   | CO2 Waveform/Data Model            | 0x80    | Transmission of CO2 waveform /data mode                          | Continuous Response<br>Command |
| 2   | Zero Command                       | 0x82    | Zero                                                             | Single Response<br>Command     |
| 3   | Signal Setting                     | 0x84    | Get and set parameters for different signal in the sensor module | Single Response<br>Command     |
| 4   | NACK Error                         | 0xC8    | Check error command                                              | 1                              |
| 5   | Stopping Continuous Mode           | 0xC9    | Stop data transmission of continuous response command            | Single Response Command        |
| 6   | Getting Software Version           | 0xCA    | Get current software version                                     | Single Response<br>Command     |
| 7   | Resetting no Breath Detection Flag | 0xCC    | Require system clear no breath detection flag compulsorily       | Single Response<br>Command     |
| 8   | Sensor Resetting                   | 0xF8    | A reset system monitor is generated in the sensor                | Single Response<br>Command     |



## 3. Communication Protocol

3.1 CO2 Waveform/Data Model (Command 80h)

Command: 80h - NBF - 0 - CKS

Command Type: Continuous Response Command

Response: 80h - NBF - SYNC - CO2WB1 - CO2WB2 - [ DPI - DPB1 - DPBn ] - CKSUM

**Definitions:** 

80h - Command byte

NBF - Number of bytes to follow (including CKS)

**SYNC** - Synchronization counter which increments with each packet sent. Counter starts at 0 and rolls over to zero when it reaches 127. This byte can be used to detect missed packets.

**CO2WB1**, **CO2WB2** - CO2 Waveform x100. (Note: 1. CO2 value is the unit of current CO2 transmission, which can be set and restored by using the corresponding instructions in parameter setting)

DPI - Data Parameter Index. The DPI is sent only when necessary. (Standard resolution)

**DPB1, DPBn** - These bytes are sent only when necessary. These bytes contain the DPI data and the number of bytes can vary from zero to five bytes.

**CKSUM** - Checksum byte

The CO2 waveform can be decoded as follows:

| Units     | Range               | Resolution | Conversion                             |
|-----------|---------------------|------------|----------------------------------------|
| mmHg      | -9.99 to150.00 mmHg | 0.01 mmHg  | (((128 * CO2WB1) + CO2WB2) - 1000)/100 |
| kPa       | -9.99 to 20.00 kPa  | 0.01 kPa   | (((128 * CO2WB1) + CO2WB2) - 1000)/100 |
| Percent % | -9.99 to 19.70 %    | 0.01 %     | (((128 * CO2WB1) + CO2WB2) - 1000)/100 |

The DPI byte contains patient parameter data. The types of DPI are summarized in the table below and described in detail in Appendix B.

#### Command 80h DPI Parameter Table

| DPI | Number Bytes | Description              | Calculation                                     |
|-----|--------------|--------------------------|-------------------------------------------------|
| 1   | 5            | Reserved                 |                                                 |
| 2   | 2            | ETCO <sub>2</sub> x10    | ETCO2 = (DPB1 * 2 <sup>7</sup> ) + DPB2         |
| 3   | 2            | Respiration Rate         | RespRate= (DPB1 * 2 <sup>7</sup> ) + DPB2       |
| 4   | 2            | Insp CO <sub>2</sub> x10 | Insp CO2 = (DPB1 * 2 <sup>7</sup> ) + DPB2      |
| 5   | 0            | Breath Detected Flag     | Breath has been detected when this DPI is sent. |
| 7   | 2            | Reserved                 |                                                 |

# **Communication Protocol**



## 3.2 Zero Command (Command 82h)

Command: 82h -NBF - CKS

Command Type: Single Response Command

Response: 82h - NBF - ZSB - CKS

**Definitions:** 

82h - Command byte

NBF - Number of bytes to follow (including CKS)

ZSB - Zero status byte (see table below)

CKS - Checksum

**Description:** This command is used to initiate a zero. A zero is used to correct for differences in airway adapter types. The zero must be performed free of any CO2.

| ZSB | Description                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 0   | Zero started.                                                                                                             |
| 1   | Zero errors. It may be caused by the following reasons:  In sleep mode  Module temperature not stable Sensor signal error |
| 2   | Zero in already progress (started).                                                                                       |
| 3   | Zero adjustment unsuccessful and breaths have been detected in the last 20 seconds.                                       |

## 3.3 Signal Setting (Command 84h)

Command: 84h - NBF - ISB - [ DB1 - ... - DBN] - CKS

Command Type: Single Response Command

Response: 84h - NBF - ISB - DB1 - ... - DBN - CKS

**Definitions:** 

84h - Command byte

NBF - Number of bytes to follow (including CKS)

**ISB** – Identifier of setting byte (see table below)

DB1 ... DBN - Data bytes used to set and return the parameter of a particular sensor setting

CKS - Checksum

**Description:** This command is used to get and set the various sensor parameter in the module. When the command has no selectable data bytes in DB1... DBN transmitted to the sensor, the command string displays the current value set by the sensor. The setting for host recognizing a valid byte identifier - ISB. If an invalid byte identifier is given, the response of the command string will not return the data bytes, only ISB=0



The table below lists the ISB byte identifiers and the corresponding sensor settings.

| ISB | Number of Bytes | Sensor Setting Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | 0               | Invalid Instrument or Parameter Setting Number of Data Bytes = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1   | 2               | Pressure  Default: 760 mmHg.  Resolution: 1 mmHg (400-850 mmHg)  Conversion: Barometric Pressure = (128 * DB1) + DB2  DB1 = (Barometric Pressure / 128) & 7Fh  DB2 = (Barometric Pressure) & 7Fh  Notes: This setting is used to set current Barometric Pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4   | 2               | Gas Temperature  Default: 35.0 °C.  Resolution: 0.1 °C (0.0 − 50.0 °C)  Conversion: Gas Temperature °C = (128 * DB1 + DB2) / 10  Notes: This setting is used to set temperature of the gas mixture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7   | 1               | Current CO2 Units  Default: mmHg  Conversion: CO2 units = DB1  = 0 CO2 units are mmHg  = 1 CO2 units are kPa  = 2 CO2 units are percent (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9   | 1               | Zero Gas Type  Default: zero on room air  Conversion: zero gas = DB1  = 0 zero on N2  = 1 zero on room air  Notes: When performing a zero on room air, this setting should be set to room air (the default).  Only change to nitrogen (N2) when performing a zero on 100% N2 gas; this is provided for use in a laboratory environment.                                                                                                                                                                                                                                                                                                                                                                             |
| 11  | 4               | Get/Set Gas Compensations DB1 = O2 Compensation Default: 16 % Conversion: O2 compensation = DB1 Resolution: 1 % (0 – 100 %) DB2 = Balance gas Default: 0 (room air) Conversion: balance gas = DB2 = 0, room air = 1, N2O = 2, Helium DB3, DB4 = Anesthetic agent x10 Default: 0.0 % Conversion: Anesthetic agent = [ (DB3 * 27) + DB4] / 10 Resolution: 0.1 % (0.0 – 20.0 %) Notes: This setting is used to adjust the compensation of the sensor when the mixed gas acts on the patient. Anesthetic agent is ignored when the balance gas is set to helium. Example: An oxygen value is 40%, N2O was balanced with 3.5% anesthetic, comply with the following data bytes, DB1 = 40, DB2 = 1, DB3 = 0, and DB4 = 35 |

Attachment: Main parameter setting and reading protocol.



# (1) Barometric Pressure Default 760mmHg Resolution 1 mmHg (400-850 mmHg)

| Туре                                | Host sending(hex) | Sensor Respond(hex) |
|-------------------------------------|-------------------|---------------------|
| Setting Barometric Pressure=760mmHg | 84 04 01 05 78 6A | 84 04 01 05 78 6A   |
| Getting Current Barometric Pressure | 84 02 01 79       | 84 04 01 05 78 6A   |

# (2) Temperature Default 35.0 °C Resolution 0.1 °C (0.0-50.0 °C)

| Туре                        | Host sending(hex) | Sensor Respond(hex) |
|-----------------------------|-------------------|---------------------|
| Setting Temperature =35.0 ℃ | 84 04 04 02 5E 14 | 84 04 04 02 5E 14   |
| Getting Current Temperature | 84 02 04 76       | 84 04 04 02 5E 14   |

# (3) Unit Default mmHg

| Туре                 | Host sending(hex) | Sensor Respond(hex) |
|----------------------|-------------------|---------------------|
| Setting Unit =mmHg   | 84 03 07 00 72    | 84 03 07 00 72      |
| Getting Current Unit | 84 02 07 73       | 84 03 07 00 72      |

## (4) Gas Compensation

## O2 Compensation Default 16% Resolution 1% (0-100%)

# Balance gas

| Balance Gas | Definition         |
|-------------|--------------------|
| 0           | room air (Default) |
| 1           | N2O                |
| 2           | He                 |

## Anesthetic agent Default 0.0% Resolution 0.1% (0.0-20.0%)

| Туре                                                                                     | Host sending(hex)       | Sensor Respond(hex)     |  |
|------------------------------------------------------------------------------------------|-------------------------|-------------------------|--|
| Setting O2 concentration =40%, balanced gas is N2O, anesthetic agent concentration =3.5% | 84 06 0B 28 01 00 23 1F | 84 06 0B 28 01 00 23 1F |  |
| Getting Current Information of Gas<br>Compensation                                       | 84 02 0B 6F             | 84 06 0B 28 01 00 23 1F |  |



## 3.4 NACK Error (Command C8h)

Response: C8h - NBF - CEB - CKS

Definitions: C8h - command identifier

**NBF** - Number of bytes to follow (including CKS) **CEB** - Command error byte (see Table below)

CKS - Checksum byte

Description: The communications protocol has built-in command error checking. The following command errors are detected:

| CEB   | NACK Error         | Description                                                                                                                                                              |  |  |
|-------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0     | Boot code          | Waiting for bootloader – Startup only                                                                                                                                    |  |  |
| 1     | Invalid Command    | This occurs whenever a command other than the defined commands is received. It can also occur when a command byte (byte > 80h) is expected but the actual byte is < 80h. |  |  |
| 2     | Checksum Error     | This occurs whenever an improper checksum is received.                                                                                                                   |  |  |
| 3     | Time-out Error     | This occurs whenever more than 500 ms elapses between the first and last bytes of a command.                                                                             |  |  |
| 4     | Invalid Byte count | This occurs whenever the byte count is less than the number of bytes expected for a particular command.                                                                  |  |  |
| 5     | Invalid Data Byt   | This occurs whenever a non-command byte expected and a command byte (byte with MSB=1) is encountered.                                                                    |  |  |
| 6     |                    |                                                                                                                                                                          |  |  |
| 7     |                    |                                                                                                                                                                          |  |  |
| 8     | System Faulty      | This occurs when the system is in a non-functional state due to a system fault. All                                                                                      |  |  |
| 9     |                    | commands will be ignored. Contact Service.                                                                                                                               |  |  |
| 10    |                    |                                                                                                                                                                          |  |  |
| 11-19 | Not used           | Reserved for future use.                                                                                                                                                 |  |  |
| 20    |                    |                                                                                                                                                                          |  |  |
| 21    |                    |                                                                                                                                                                          |  |  |
| 22    | System Faulty      | This occurs when the system is in a non-functional state due to a system fault. All commands will be ignored. Contact Service provider.                                  |  |  |
| 23    |                    |                                                                                                                                                                          |  |  |
| 24    |                    |                                                                                                                                                                          |  |  |

During normal operation, command errors should not occur. In cases where one of these errors is encountered, the CO2 module will respond by sending the appropriate NACK response.

If system faulty errors are encountered, the module is in a non-functional state and all commands will be rejected. Check that the sensor is properly plugged in. Reinsert or reset the sensor if necessary. If the error persists, return the sensor to the factory for servicing.



## 3.5 Stopping Continuous Mode (Command C9h)

Command: C9h - NBF - CKS

Command Type: Single Response Command

Response: C9h - NBF - CKS

**Definitions: C9h** - Command

NBF - Number of bytes to follow (including CKS)

CKS - Checksum

Description: This command is used to stop the data transmission of a continuous response command. The response is sent as soon as the current process is halted. Any data packet currently being sent will be sent in its entirety before the current continuous response is halted. If the waveform mode command is not active, the Stop Continuous Mode command will send the appropriate response but the command has no effect.

#### 3.6 Getting Software Revision (Command CAh)

Command: CAh - NBF - RF - CKS

Command Type: Single Response Command

Response: CAh - NBF - RF - DA0 - DA1 - ... - DAn - CKS

Definitions:

CAh - Command

NBF - Number of bytes to follow (including CKS)

RF - Revision, 0 by default; all software versions are displayed

CKS - Checksum

Description: This command returns the software version of the current sensor. The length of the software version does not exceed the character length of 32 bytes, and the transmission format is ASCII.

#### 3.7 Resetting no Breath Detection Flag (Command CCh)

Command: CCh - NBF - CKS

Command Type: Single Response Command

Response: CCh - NBF - CKS

**Definitions: CCh** - Command

NBF - Number of bytes to follow (including CKS)

CKS - Checksum

Description: this command is used to force the system to clear the "breath not detected" flag. After sending this command, clear the detected no breath flag bit, the system enters a similar initialization state, and all DPI parameters will be reset. In addition, this command can be sent even if the undetected breathing flag is not set.

# 3.8 Sensor Resetting (Command F8h)

Command: F8h - NBF - CKS

Command Type: Single Response Command

Response: No Definitions: F8h - Command

**NBF** - Single Response Command

CKS - Checksum

Description: This command is used to reset the sensor. After sending this command, the sensor will be reset.



# **Suitable Types of Patient Monitor**

# **Suitable Types of Patient Monitor**

| OEM Manufacturer & Models                         | Installation method | Mainstream<br>ETCO2 Sensor |
|---------------------------------------------------|---------------------|----------------------------|
| Respironics:                                      |                     |                            |
| <b>MEK</b> : MTV1000 Pneuma2<br>/MP800C/MP1300    |                     |                            |
| Bionet: BM3/BM5                                   | 72                  |                            |
| Edan:Elite V8/M80/M50                             |                     | CM2200                     |
| General Meditech: G3C/G3D/<br>G3F/G3G/G3H/G3L/G9L |                     | GINEEGG                    |
| Biocare:PM-2000/Im12/iM15                         |                     |                            |
| Contecmed: CMS8000/CMS7000<br>/CMS6000B/CMS6000A  |                     |                            |

# **After-Sales Services and Consultancy**

# Cubic Sensor and Instrument Co.,Ltd

Contact number: 86-27-8162 8827

Address: Fenghuang No.3 Road, Fenghuang Industrial Park, Eastlake Hi-tech Development Zone, Wuhan, China

Postal code: 430205 Fax: 8627-8740 1159

Website: http://www.gassensor.com.cn

E-mail: info@gassensor.com.cn